MACHAKOS UNIVERSITY

University Examinations 2020/2021 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
FIRST YEAR FIRST TERM EXAMINATION FOR
CERTIFICATE IN MECHANICAL ENGINEERING
1501/103: MATHEMATICS I
DATE: 3/6/2021
TIME: 11.30-2.30 PM
INSTRUCTIONS:
Answer ALL the Questions
Show ALL your working clearly
QUESTION ONE
a) Given that $\mathrm{F}=\frac{1}{2} m\left(v^{2}-u^{2}\right)$
i. Make m the subject of the formula
ii. Find the value of m if $\mathrm{F}=1136, \mathrm{~V}=14.8$ and $\mathrm{U}=9.24$
b) Simplify the following
i. $\quad 1 \mathrm{~m}: 30 \mathrm{~cm}$
ii. $\quad 3 \frac{5}{6}: 1 \frac{3}{20}$
c) A certain sum of money is divided in the ration $1 \frac{1}{2}: 2 \frac{1}{3}: 3 \frac{1}{4}$. If the largest share is Shs. 156, what is the sum divided?
d) Given that y is inversely proportional to x^{2} and $y=100$ when $x=4$, determine
i. $\quad Y$ when $x=6$
ii. $\quad \mathrm{X}$ when $\mathrm{y}=25$

QUESTION TWO

a) i Express in logarithmic notation $\mathrm{a}=b^{c}$
ii Express in index notation $\log _{a} x=-3$
iii Express as a single logarithm $3 \log 2-2 \log 6+2 \log 3$
b) Simplify
i. $\quad \frac{\left(2^{3}\right)^{4} \times\left(3^{2}\right)^{2}}{16^{2} \times 9^{3}}$ using indices
ii. $\quad \log 25-\log 625+\log 125$
c) Solve the following equations
i. $\quad \frac{a^{3} x a^{x}}{a^{2}}=a^{8}$
ii. $\quad 1-\log (x-6)=\log \mathrm{x}$
iii. $\left(\frac{1}{4}\right)^{y}=(32)^{3-y}$

QUESTION THREE

a) Use logarithms to evaluate
$\sqrt{\frac{0.0782 \times 34.39}{4.836}}$
b) Evaluate
i. $\quad \log _{3} \frac{1}{81}$
ii. $\quad \frac{18^{0} \times 16^{\frac{1}{2}}}{8}$
c) Solve the following equation
$3^{x+1}=2^{2 x-3}$ correct to 2 d.p
d) State the number of significant figures in the following measures
i. $\quad 6010 \mathrm{~km}$
ii. $\quad 42.058 \mathrm{hrs}$
iii. $\quad 85000 \mathrm{~cm}^{3}$

QUESTION FOUR

a) Evaluate
i. $\quad \frac{8 \times 10^{11} \times\left(2 \times 10^{-3}\right)^{4}}{3.2 \times 1.6 \times 10^{8}} \quad$ giving your answer in standard form
ii. $\quad(-3)^{2} x(-3)^{3} \div(-3)^{4}$
iii. $\left(\frac{16}{81}\right)^{\frac{1}{4}} \times \frac{2^{0} \times 3^{-2}}{5^{-1}}$
b) Express the following in fraction form
i. $\quad 0 . \dot{7}$
ii. $0.123123 \ldots .$.
c) If $2^{a} x 3^{b}=72$, what are the numerical values of a and b

QUESTION FIVE

a) The length and the width of a room when measured with a metre rule is 9 m and 8 m respectively, but it is found that the metre rule is $\frac{1}{10} \mathrm{~m}$ too short. What are the dimensions of the room?
b) Solve the following equations:-
i. $\quad \frac{5-x}{4}=\frac{x}{5}+\frac{7}{20}$
ii. $\quad 8 x-3 y=39$ and $7 x+5 y+4=0$
iii. $3 x^{2}-4 \mathrm{x}-15=0$

