

MACHAKOS UNIVERSITY

University Examinations for 2020/2021

SCHOOL OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF BUILDING AND CIVIL ENGINEERING SECOND YEAR SECOND TERM FOR DIPLOMA IN CIVIL ENGINEERING

WATER SUPPLY

DATE: TIME: INSTRUCTIONS TO CANDIDATES **ANSWER ALL QUESTIONS** Define the following terms 1. a) i) Total pressure ii) Centre of pressure iii) Archimedes principle iv) Buoyancy Centre ofbuoyancy (10 marks) v) b) A rectangular plate 2M wide and 4M deep is immersed in water in such a a way that its plane makes an angle of 25° with the water surface as shown in Figure Determine: i) Total pressure of on one side of the plate ii) The position of Centre of gravity (10 marks) 2. A tank 3mx 4m contains 1.2m deep oil of specific gravity of 0.8. Determine; a) i) Intensity of pressure at the base of the tank ii) Total pressure on the base of the tank (8 marks) b) Give two applications of hydrostatics (2 marks)

A square plate ABCD 5M X5 M hangs in from one of its corner as shown in

figure 2.

c)

	Γ	Determin	e;		
		i) ii)	The total pressure The position of Centre of gravity	(10 marks)	
3.	a)	Define the following terms			
٠.	α)				
			i) Path lines		
			ii) Streamlines		
			iii) Streaklines	(6 marks)	
	b)	Defi			
		i)	Streamline flow		
		ii)	Turbulent flow		
		iii)	Steady flow		
		iv)	Unsteady flow		
		v)	Compressive flow		
		vi)	Rotational flow		
		vii)	Irrotational flow	(14 marks)	
4.	a)	State	difference between uniform flow and non-uniform flow	(2 marks)	
	b)	Descr	Describe the three conditions for a body to be in stable equilibrium		
				(9 marks)	
	c)	A square plate of 1m side is immersed vertically with its Centre is 4m below the water surface. Determine;			
		i) To	tal pressure		
	ii) Ce		ntre of Centre	(9 marks)	
5.	a)	A gat	e 3m wide and 2m deep is fitted in a wall having a slope of 60%	constructed a	
		cross a channel. Determine;			
		i) ii)	Total pressure Position of the gate when the channel is full of water	(10 marks)	
	b)	Deriv	e an expression to show that Centre of pressure equals to;		

(10 marks)

 $h=IG+AX^{-2}/AX$