MACHAKOS UNIVERSITY

University Examinations for 2020/2021
SCHOOL OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
SECOND YEAR SECOND TERM FOR
DIPLOMA IN CIVIL ENGINEERING
WATER SUPPLY
DATE:
TIME:

INSTRUCTIONS TO CANDIDATES

ANSWER ALL QUESTIONS

1.

a) Define the following terms
i) Total pressure
ii) Centre of pressure
iii) Archimedes principle
iv) Buoyancy
v) Centre ofbuoyancy
b) A rectangular plate 2 M wide and 4 M deep is immersed in water in such a a way that its plane makes an angle of 25° with the water surface as shown in Figure Determine:
i) Total pressure of on one side of the plate
ii) The position of Centre of gravity
2. a) A tank 3 mx 4 m contains 1.2 m deep oil of specific gravity of 0.8.Determine;
i) Intensity of pressure at the base of the tank
ii) Total pressure on the base of the tank (8 marks)
b) Give two applications of hydrostatics
c) A square plate ABCD 5 M X5 M hangs in from one of its corner as shown in figure 2.

Determine;
i) The total pressure
ii) The position of Centre of gravity
3. a) Define the following terms
i) Path lines
ii) Streamlines
iii) Streaklines
b) Define the following types of flow
i) Streamline flow
ii) Turbulent flow
iii) Steady flow
iv) Unsteady flow
v) Compressive flow
vi) Rotational flow
vii) Irrotational flow
4. a) State difference between uniform flow and non-uniform flow
b) Describe the three conditions for a body to be in stable equilibrium
c) A square plate of 1 m side is immersed vertically with its Centre is 4 m below the water surface. Determine;
i) Total pressure
ii) Centre of Centre
5. a) A gate 3 m wide and 2 m deep is fitted in a wall having a slope of 60° constructed a cross a channel. Determine;
i) Total pressure
ii) Position of the gate when the channel is full of water
(10 marks)
b) Derive an expression to show that Centre of pressure equals to;
$\mathrm{h}=\mathrm{IG}+\mathrm{AX}^{-2} / \mathrm{AX}$
(10 marks)

