

MACHAKOS UNIVERSITY

University Examinations for 2022/2023 Academic Year

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

THIRD YEAR FIRST SEMESTER EXAMINATION FOR

BACHELOR OF SCIENCE (ELECTRICAL AND ELECTRONIC ENGINEERING)

SPT 202: ELECTRICAL CIRCUITS

DAT	: TIME:			
INSTRUCTIONS Answer Question One and Any Other Two Questions QUESTION ONE (COMPULSORY) (30 MARKS)				
	i) Two types of magnets			
	ii) Two classifications of magnetic materials (4 marks)			
b)	With the aid of a diagram, explain the effect of			
	i) Current carrying conductor			
	ii) Between a pair of poles (4 marks)			
d)	A coil of 400 turns is wound on a material ring with a circumference of 50cm and a			
	crossectional area of 5cm ² . If a current of 10A flows. Determine the;			
	i) Magnetic field strength			
	ii) Flux density			
	iii) Magnetic flux			
	(6 marks)			

e) Each phase of a delta-connected load comprises a resistance of 40Ω and a 40μ F capacitor in series. Determine, when connected to a 415 V, 50 Hz, 3-phase supply (i) the phase current,

- (ii) the line current,
- (iii) the total power dissipated,
- f) Using the Thevins theorem, Determine the current through the load resistor in figure below

QUESTION TWO (20 MARKS)

- a) State
 - i) Lenz's law
 - ii) Flemings Right hand rule
- b) Define the terms
 - i) Relative permeability
 - ii) Absolute permeability

(4 marks)

(4 marks)

c) A closed magnetic circuit of cast steel has 8cm long path of crossectional area 2cm² and 4cm path of crossectional area 1cm². a coil of 400 turns is wound on the 8cm length and a current of 0.5A flows.

Determine the;

- i) Total reluctance
- ii) Flux density in 4cm path use relative permeability of 800. (6 marks)
- d) A coil of inductance 160mH and resistance 50Ω is connected in parallel with a 40µF capacitor across 240v, 50Hz supply
 Determine the:

 i) Current in the coil and its phase angle
 ii) Supply current and phase angle

QUESTION THREE (20 MARKS)

a)	i)	State four factors which determine the magnitude of force in a curr conductor.	ent carrying		
			(6 marks)		
	ii)	Highlight 4 factors which determine the value of inductance in a co	oil		
			(6 marks)		
b)	A flux	of 30mwb links with a 2000 turns of coil when a current of 5A flow	vs;		
	Determine the;				
	i)	Inductance of the coil			
	ii)	Energy stored			
	iii)	Induced emf, If the current changes after 100 seconds			
			(6 marks)		
c)	2 coils	s are connected in series aiding of inductance 300mH and 400mH			
	Determine				
	i)	Total inductance			
	ii)	Mutual inductance	(2 marks)		
QUE	ESTION	FOUR (20 MARKS)			
a)	i)	Explain the terms reactive and active power in A.C. circuits	(2 marks)		
	ii)	A coil of resistance 5Ω and inductance 120mH in series with a 200	0μ F capacitor		
		is connected in series v to a 300v, 50Hz supply			
Cal		ulate i) Current flowing in the circuit			
		ii) Phase difference	(6 marks)		

- b i) State any Three advantages of three phase systems
 - ii) Three identical capacitors are connected (a) in star, (b) in delta to a 400 V, 50 Hz,3-phase supply. If the line current is 12 A, Determine in each case the capacitance of each of the capacitors.

(8 marks)

c) Determine the Norton's equivalent of figure 2 below

QUESTION FIVE (20 MARKS)

- a) i) Define the terms Electric field and charge
 - ii) Obtain the equivalent capacitance of the network in figure 3 . For a 300V supply, determine the charge and voltage across each capacitor.

(10 marks)

- b) i) State the superposition theorem
 - ii) Using the superposition theorem determine the current through the 3 Ω resistor

(10 marks)