MACHAKOS UNIVERSITY

University Examinations for 2022/2023 Academic Year
SCHOOL OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

THIRD YEAR FIRST SEMESTER EXAMINATION FOR
BACHELOR OF SCIENCE (ELECTRICAL AND ELECTRONIC ENGINEERING)
SPT 202: ELECTRICAL CIRCUITS
DATE:
TIME:

INSTRUCTIONS

Answer Question One and Any Other Two Questions

QUESTION ONE (COMPULSORY) (30 MARKS)
a) With reference to magnetism, explain
i) Two types of magnets
ii) Two classifications of magnetic materials
b) With the aid of a diagram, explain the effect of
i) Current carrying conductor
ii) Between a pair of poles
d) A coil of 400 turns is wound on a material ring with a circumference of 50 cm and a crossectional area of $5 \mathrm{~cm}^{2}$. If a current of 10 A flows. Determine the;
i) Magnetic field strength
ii) Flux density
iii) Magnetic flux
e) Each phase of a delta-connected load comprises a resistance of 40Ω and a $40 \mu \mathrm{~F}$ capacitor in series. Determine, when connected to a $415 \mathrm{~V}, 50 \mathrm{~Hz}, 3$-phase supply
(i) the phase current,
(ii) the line current,
(iii) the total power dissipated,
f) Using the Thevins theorem, Determine the current through the load resistor in figure below

6 mks

QUESTION TWO (20 MARKS)

a) State
i) Lenz's law
ii) Flemings Right hand rule
b) Define the terms
i) Relative permeability
ii) Absolute permeability
c) A closed magnetic circuit of cast steel has 8 cm long path of crossectional area $2 \mathrm{~cm}^{2}$ and 4 cm path of crossectional area $1 \mathrm{~cm}^{2}$. a coil of 400 turns is wound on the 8 cm length and a current of 0.5 A flows.
Determine the;
i) Total reluctance
ii) Flux density in 4 cm path use relative permeability of 800 .
d) A coil of inductance 160 mH and resistance 50Ω is connected in parallel with a $40 \mu \mathrm{~F}$ capacitor across $240 \mathrm{v}, 50 \mathrm{~Hz}$ supply
Determine the:
i) Current in the coil and its phase angle
ii) Supply current and phase angle

QUESTION THREE (20 MARKS)

a) i) State four factors which determine the magnitude of force in a current carrying conductor.
ii) Highlight 4 factors which determine the value of inductance in a coil
(6 marks)
b) A flux of 30 mwb links with a 2000 turns of coil when a current of 5A flows;

Determine the;
i) Inductance of the coil
ii) Energy stored
iii) Induced emf , If the current changes after 100 seconds
(6 marks)
c) 2 coils are connected in series aiding of inductance 300 mH and 400 mH

Determine
i) Total inductance
ii) Mutual inductance

QUESTION FOUR (20 MARKS)

a) i) Explain the terms reactive and active power in A.C. circuits
ii) A coil of resistance 5Ω and inductance 120 mH in series with a $200 \mu \mathrm{~F}$ capacitor is connected in series v to a $300 \mathrm{v}, 50 \mathrm{~Hz}$ supply

Calculate i) Current flowing in the circuit
ii) Phase difference
b i) State any Three advantages of three phase systems
ii) Three identical capacitors are connected (a) in star, (b) in delta to a $400 \mathrm{~V}, 50 \mathrm{~Hz}$, 3-phase supply. If the line current is 12 A , Determine in each case the capacitance of each of the capacitors.
c) Determine the Norton's equivalent of figure 2 below

QUESTION FIVE (20 MARKS)

a) i) Define the terms Electric field and charge
ii) Obtain the equivalent capacitance of the network in figure 3 . For a 300V supply, determine the charge and voltage across each capacitor.

(10 marks)
b) i) State the superposition theorem
ii) Using the superposition theorem determine the current through the 3Ω resistor

(10 marks)

