

MACHAKOS UNIVERSITY

University Examinations for 2022/2023 Academic Year

SCHOOL OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

THIRD YEAR SECOND SEMESTER EXAMINATION FOR

BACHELOR OF SCIENCE (ELECTRICAL & ELECTRONIC

SPH304: AC CIRCUIT THEORY

DATE:

TIME:

INSTRUCTIONS; ANSWER QUESTION ONE AND ANY OTHER TWO

QUESTION ONE (COMPULSORY) (30 MARKS)

a)	i)	Explain the terms reactive and active power in A.C. circuits	(2 marks)		
	ii) A coil of resistance 8Ω and inductance 150mH in series with a 300μ F c				
	connected in series v to a 400v, 50Hz supply				
	Calcul	ate i) Current flowing in the circuit			
		ii) Phase difference	(5 marks)		
b)	i)	i) Define the following terms with reference to magnetic circuits.			
	ii)	Reluctance			
	ii)	Absolute permeability	(4 marks)		
c)	A magnetic circuit has a cross-sectional area of 0.5cm ² with one part 3cm long and				
	relative permeability of 1500 and a second part 4cm long with relative permeability 800.				
	It has 2	200 turns coil carrying current of 20A, determine the flux in the circuit.			
			(4 marks)		
d)	i)	With aid of characteristic curves explain the operation of the following filters			
	ii)	low pass			
	iii)	All pass filter			
e)	State 3 merits and 2 demerits of the Maxwell -wien bridge (5 marks				

- d) The secondary of a transformer connected across a bridge rectifier to provide a no load dc voltage of 9 V. If the secondary winding resistance is 3 Ω and dynamic resistance of each diode is 1 Ω , determine the Determine the
 - i) peak and rms voltages on
 - ii) dc output across a load resistance of 100Ω and $1 \text{ K} \Omega$. (10 marks)

QUESTION TWO (20 MARKS)

- a) i) Explain the reason why electrical equipments are rated in VA or KVA. (2 marks)
 - ii) Define the terms conductance and susceptance in A.C. circuits (4 marks)
 - iii) A coil of inductance 200mH and resistance 60Ω is connected in parallel with a 80μ F capacitor across 300v, 50Hz supply Determine the:
 - i) Current in the coil and its phase angle
 - ii) Supply current and phase angle
 - ii) Apparent power (6 marks)

b) i) Define Transformer impedance matching

ii) State Two applications of impedance matching in telecommunication systems.

(3 marks)

c) A transformer has 1000 and 400 primary and secondary turns, the primary and secondary turns, the primary and secondary resistances are 0.6Ω and 0.08Ω respectively, with corresponding resistances of 6Ω respectively.

Determine the;

- i) Equivalent resistance referred to primary winding.
- ii) Equivalent impedance referred to primary
- iii) Phase angle (5 marks)

QUESTION THREE (20 MARKS)

a)	i)	Define the terms primary and secondary filters.	
			(4 marks)
	ii)	Explain Aliasing in filters	

b) Figure 1 shows a circuit of low-pass filter with Vin = 12V.

Fig 1

Determine the;

- i) Reactance of capacitor at 1KHZ
- ii) Output voltage at 1KHZ.
- iii) The break frequency of the circuit
- iv) Output voltage at the break frequency
- c) i) State the:
 - ii) Lenzs law
 - iii) Flemings left hand rule
- d) Highlight the factors which affect the inductance of an inductor in electromagnetism

QUESTION FOUR (20 MARKS)

- a) i) Explain the importance of A.C bridges in circuit analysis
 - ii) State the three types of instruments used as detectors in A.C bridges.

(6 marks)

(8 marks)

(4 marks)

(2 marks)

b)	i)	Four impedances of an a.c bridge are	
		$Z_1 = 600 \le 40^0 \Omega$	
		$Z_2 = 200 \le 90^0 \Omega$	
		$Z_3 = 50 < 20^0 \Omega$	
		$Z_4 = 40 < 30^0 \Omega$	
		Determine whether the bridge is balanced or not	(4 marks)

c) i) With the aid of a circuit diagram, show that for Maxwell's inductance bridge. The value of unknown inductance L_1 is given by the expression

 $\begin{array}{l} L_1 = L_1 \ R_3 \\ R_4 \end{array}$ Where R₃ and R₄ are known Resistances L₂ standard inductance.

ii) The arms of an a.c. Maxwell bridge are arranged as follows: AB and BC are nonreactive resistors of 100 Ω each, DA is a standard variable reactor L1 of resistance 32.7 Ω and CD comprises a standard variable resistor R in series with acoil of unknown impedance. Balance was obtained with L1 = 47.8 mH and R = 1.36 Ω . Find the resistance and

inductance of the coil

(10 marks)

QUESTION FIVE (20 MARKS)

- a) i) State any Three disadvantages of half wave are rectifier
 - ii) With the aid of a block diagram, explain the parts of a rectifier circuit.

(7 marks)

(8 marks)

- b) With the aid of circuit diagram and waveform, explain the operation of a centre tap bridge rectifier (5 marks)
- c) A 220 V, 60 Hz voltage is applied to a centre tapped step-down transformer of 22: 1 with a load of 1 K Ω connected across the output of two-diode full-wave rectifier. Assume diodes to be ideal. If the resistance of half-secondary winding is 0.5 Ω , determine the
 - (i) peak, rms and dc voltages,
 - (ii) peak, rms and dc currents,

Examination Irregularity is punishable by expulsion