MACHAKOS UNIVERSITY

University Examinations for 2022/2023 Academic Year
SCHOOL OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

THIRD YEAR SECOND SEMESTER EXAMINATION FOR

BACHELOR OF SCIENCE (ELECTRICAL \& ELECTRONIC

SPH304: AC CIRCUIT THEORY

DATE:
TIME:

INSTRUCTIONS; ANSWER QUESTION ONE AND ANY OTHER TWO
 QUESTION ONE (COMPULSORY) (30 MARKS)

a) i) Explain the terms reactive and active power in A.C. circuits
ii) A coil of resistance 8Ω and inductance 150 mH in series with a $300 \mu \mathrm{~F}$ capacitor is connected in series v to a $400 \mathrm{v}, 50 \mathrm{~Hz}$ supply
Calculate i) Current flowing in the circuit
ii) Phase difference
b) i) Define the following terms with reference to magnetic circuits.
ii) Reluctance
ii) Absolute permeability
c) A magnetic circuit has a cross-sectional area of $0.5 \mathrm{~cm}^{2}$ with one part 3 cm long and relative permeability of 1500 and a second part 4 cm long with relative permeability 800 . It has 200 turns coil carrying current of 20 A , determine the flux in the circuit.
d) i) With aid of characteristic curves explain the operation of the following filters
ii) low pass
iii) All pass filter
e) State 3 merits and 2 demerits of the Maxwell -wien bridge
d) The secondary of a transformer connected across a bridge rectifier to provide a no load dc voltage of 9 V . If the secondary winding resistance is 3Ω and dynamic resistance of each diode is 1Ω, determine the Determine the
i) peak and rms voltages on
ii) dc output across a load resistance of 100Ω and $1 \mathrm{~K} \Omega$.
(10 marks)

QUESTION TWO (20 MARKS)

a) i) Explain the reason why electrical equipments are rated in VA or KVA. (2 marks)
ii) Define the terms conductance and susceptance in A.C. circuits (4 marks)
iii) A coil of inductance 200 mH and resistance 60Ω is connected in parallel with a $80 \mu \mathrm{~F}$ capacitor across $300 \mathrm{v}, 50 \mathrm{~Hz}$ supply
Determine the:
i) Current in the coil and its phase angle
ii) Supply current and phase angle
ii) Apparent power
b) i) Define Transformer impedance matching
ii) State Two applications of impedance matching in telecommunication systems.
c) A transformer has 1000 and 400 primary and secondary turns, the primary and secondary turns, the primary and secondary resistances are 0.6Ω and 0.08Ω respectively, with corresponding resistances of 6Ω respectively.

Determine the;
i) Equivalent resistance referred to primary winding.
ii) Equivalent impedance referred to primary
iii) Phase angle

QUESTION THREE (20 MARKS)

a) i) Define the terms primary and secondary filters.
ii) Explain Aliasing in filters
b) Figure 1 shows a circuit of low-pass filter with Vin $=12 \mathrm{~V}$.

Fig 1

Determine the;
i) Reactance of capacitor at 1 KHZ
ii) Output voltage at 1 KHZ .
iii) The break frequency of the circuit
iv) Output voltage at the break frequency
c) i) State the:
ii) Lenzs law
iii) Flemings left hand rule
d) Highlight the factors which affect the inductance of an inductor in electromagnetism

QUESTION FOUR (20 MARKS)
a) i) Explain the importance of A.C bridges in circuit analysis
ii) State the three types of instruments used as detectors in A.C bridges.
(6 marks)
b) i) Four impedances of an a.c bridge are

$$
\begin{aligned}
& \mathrm{Z}_{1}=600<40^{0} \Omega \\
& \mathrm{Z}_{2}=200<90^{\circ} \Omega \\
& \mathrm{Z}_{3}=50<20^{\circ} \Omega \\
& \mathrm{Z}_{4}=40<30^{0} \Omega
\end{aligned}
$$

Determine whether the bridge is balanced or not
c) i) With the aid of a circuit diagram, show that for Maxwell's inductance bridge. The value of unknown inductance L_{1} is given by the expression

$$
\mathrm{L}_{1}=\mathrm{L}_{1} \mathrm{R}_{3}
$$

R_{4}
Where R_{3} and R_{4} are known Resistances
L_{2} standard inductance.
ii) The arms of an a.c. Maxwell bridge are arranged as follows: AB and BC are nonreactive resistors of 100Ω each, DA is a standard variable reactor L 1 of resistance 32.7Ω and CD comprises a standard variable resistor R in series with acoil of unknown impedance. Balance was obtained with $\mathrm{L} 1=47.8 \mathrm{mH}$ and $\mathrm{R}=1.36 \Omega$. Find the resistance and
inductance of the coil
(10 marks)

QUESTION FIVE (20 MARKS)

a) i) State any Three disadvantages of half wave are rectifier
ii) With the aid of a block diagram, explain the parts of a rectifier circuit.
b) With the aid of circuit diagram and waveform, explain the operation of a centre tap bridge rectifier
c) A $220 \mathrm{~V}, 60 \mathrm{~Hz}$ voltage is applied to a centre tapped step-down transformer of 22: 1 with a load of $1 \mathrm{~K} \Omega$ connected across the output of two-diode full-wave rectifier. Assume diodes to be ideal. If the resistance of half-secondary winding is 0.5Ω, determine the
(i) peak, rms and dc voltages,
(ii) peak, rms and dc currents,

