

SCHOOL OF AGRICULTURE, ENVIRONMENT AND HEALTH SCIENCES

DEPARTMENT OF AGRICULTURAL SCIENCES

THIRD YEAR FIRST SEMESTER EXAMINATION FOR

BACHELOR OF SCIENCE (AGRICULTURAL EDUCATION AND EXTENSION)

AGR 305: PLANT BREEDING

DATE:

TIME:

INSTRUCTION: Answer Question One (Compulsory) and Any Other Two Questions.

QUESTION ONE (COMPULSORY)(30 MARKS)

a)	Explain two shortcomings that may result when improving the adaptability of pigeon peas	
	variety for drought tolerance	(2 marks)
b)	Distinguish between the following terms used in plant breeding	(6 marks)
	i) Orthodox and recalcitrant seeds	
	ii) General combining ability (GCA) and specific combining ability (SCA)	
	iii) B line and R line	
c)	With the aid of an illustration in each case, explain the implication of th	e following
	Mendel's principles in plant breeding programmes.	
	i) Principle of segregation	(3 marks)
	ii) Principle of independent assortment	(3 marks)
d)	Explain three factors that determine genetic gain in breeding for abiotic stresses i	n beans
		(3 marks)
e)	i) With the aid of an equation, describe role of each component of phenotypic va	riation in
	rice breeding	(4 marks)

	ii) Explain two reasons why heritability is crucial in breeding green grams for disease		
	resistance	(2 marks)	
f)	in two implications of plant breeder's protection rights in developing high-yielding		
	maize varieties for low-land areas	(2 marks)	
g)	plain three classical methods used in breeding groundnuts for tolerance to saline		
	conditions	(3 marks)	
h)	Explain two reasons why breeders are discouraged from utilizing apomixis in deve	sons why breeders are discouraged from utilizing apomixis in developing	
	high-yielding sorghum varieties	(2 marks)	

QUESTION TWO (20 MARKS)

- a) With an example of a disease infection on a specific crop in each case, describe three plant response mechanisms in the prevention of infection (6 marks)
- b) Using a diagram, describe an appropriate method used to develop stem rust resistance in oats controlled by recessive genes. (14 marks)

QUESTION THREE (20 MARKS)

- a) Explain four techniques of breeding yam varieties for heat tolerance (12 marks)
- b) With the aid of diagrams, describe two ways of breeding superior lines in maize utilizing self-incompatibility (8 marks)

QUESTION FOUR (20 MARKS)

- a) With the aid of a diagram in each case, describe two applications of modern breeding methods that can be employed in breeding superior lines for drought tolerance and high-yielding varieties in beans.
 (12 marks)
- b) During the development of the varieties in (a) above, explain four ways of developing transgressive segregants
 (8 marks)

QUESTION FIVE (20 MARKS)

- a) Describe the step-by-step process employed by a breeder in developing new sunflower varieties for drought adaptation (8 marks)
- b) Assume you have been employed by CIMMYT, Kenya as a plant breeder, and you are

tasked with the improvement of maize production for high yield using cytoplasmic male

sterility (CMS). Using an illustration, describe how you would deploy the method.