

MACHAKOS UNIVERSITY University Examinations for 2021/2022 Academic Year SCHOOL OF AGRICULTURE, ENVIRONMENT AND HEALTH SCIENCES DEPARTMENT OF AGRICULTURAL SCIENCES FIRST YEAR FIRST SEMISTER EXAMINATION FOR MASTER OF SCIENCE IN AGRICULTURAL ECONOMICS AND DEVELOPMNENT AED 805: STATISTICS FOR AGRICULTURAL ECONOMISTS

DATE: 25/8/2022

TIME: 9.00-12.00 PM

INSTRUCTIONS:

Answer **Question ONE** and **ANY TWO** other questions. Statistical tables are annexed.

QUESTION ONE (20 MARKS)

- a) Explain three uses of statistics in agriculture and development (3 marks)
- A dairy cooperative wishes to take all its eleven committee members for governance training. The trainer can only admit three members per cooperative. How many different ways can the members be selected for the training? (2 marks)
- c) A researcher interviewed 15 farmers aged 25 years, 39 farmers aged 35 years and 115 farmers aged 45 years. What is the mean age of the farmers? (2 marks)
- d) Weather data for a certain county show that **three** out of every **twenty** seasons will record crop failure. Using the Poisson distribution, find the probability that in the next twenty seasons:
 - i. Only two seasons will record crop failure (2 marks)
 - ii. At least fifteen seasons will not record crop failure (3 marks)
- e) An agricultural officer reported the following milk prices (KSh/litre) from different markets: 57, 56, 55, 51, 79, 62, 55, 60, 59, 64, 62, 67, 61, 55, 72, 58, 63, 51,52,77. Using measures of centrality, explain the symmetry of the data (3 marks)

f) The data below shows the number chicken held by a farmer as breeding stock.

Chicken	Age of chicken								
Breed	6 months	9 months	12 months	15 months					
А	112	87	217	56					
В	231	114	104	305					
С	95	211	79	98					

Present the data in a contingency table, expressed as percentage of row totals (5 marks)

QUESTION TWO (20 MARKS)

- a) After a relief food distribution exercise in two Sub-locations, there were claims that households in Sub-location B were allocated more maize than those in Sub-location A. As the Project Coordinator, you sampled 21 beneficiaries from Sub-location A and 17 beneficiaries from the Sub-location B and obtained mean maize allocations of 42.5kg and 59.8kg, respectively. The sample standard deviations were 2.7kg and 5.3kg, respectively. Test whether the claims of biased food distribution were statistically true (10 marks)
- A box of milk packets from Wakulima Cooperative contains 24 packets, of which 4 are spoilt. Four customers are sequentially given one packet each from the box to taste the milk. Using a probability tree:
 - i. Find the probability that all customers receive milk that is not spoilt (5 marks)
 - ii. Compute the probability that at least one customer gets spoilt milk (5 marks)

QUESTION THREE (20 MARKS)

a) In a farmer field school, farmers performed an experiment to test the correlation between fertilizer rate and sorghum production and obtained the following data.

Fertilizer rate (Kg/acre)	15	25	50	75
Sorghum output (tons)	0.4	0.6	1.1	1.4

- i. Estimate the correlation coefficient (8 marks)
- ii. Interpret the correlation coefficient derived in (i) above (2 marks)

b) A researcher assessing the level of poverty in three countries in the year 2021 obtained the following data. Test whether poverty levels differ significantly across the countries.

(10 marks)

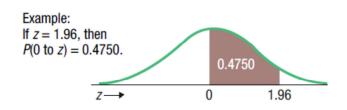
Quarter	Mean poverty levels (% poor households)								
	Country1	Country3							
Q1	55	66	47						
Q2	54	76	51						
Q3	59	67	46						
Q4	56	71	48						

QUESTION FOUR (20 MARKS)

a) Below is data on tomato sales over an eight-week period. The production manager is interested in identifying the best method for forecasting sales. Demonstrate which method between a 3-week moving average and exponential smoothing with a smoothing constant of 0.2, would be more appropriate. (12 marks)

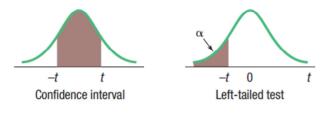
Week	1	2	3	4	5	6	7	8
Sales volume (KSh'000)	17	21	19	23	18	16	20	18

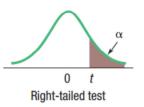
b) The following table shows the number of farmers adopting irrigation in a certain Village.Test whether adoption decision is independent of education level (8 marks)

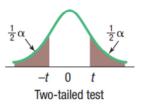

Irrigation Adoption Decision	Education level					
	Primary	Secondary	Tertiary			
Number of farmers adopting irrigation	9	16	5			
Number of farmers not adopting irrigation	27	25	7			

QUESTION FIVE (20 MARKS)

- a) A random check on daily iron intake (mg/day) of 10 women in Glory village gave the following data: 11.2, 9.1, 14.3, 8.6, 5.7, 3.1, 8.2, 5.1, 13.4, 1.3. Is the mean intake statistically different from the WHO recommended rate of 14.8mg per day? (12 marks)
- b) Below is income data of 10 smallholder farmers before and after training on farm business management. At α =0.05, is the population median income statistically higher after the training? (8 marks)

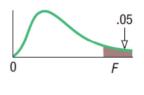

	Farmer serial number									
	1	2	3	4	5	6	7	8	9	10
Income before training (KSh'000)	46	42	41	53	51	21	49	32	28	50
Income after training (KSh'000)	52	40	49	57	48	50	59	48	37	45


B.1 Areas under the Normal Curve

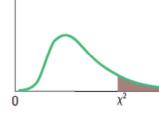


z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

B.2 Student's t Distribution



			Confidence	e Intervals,	C				Co	onfidence In	tervals, c		
	80%	90%	95%	98%	99%	99.9%		80%	90%	95%	98%	99%	99.9%
		Level of	Significanc	e for One-Ta	ailed Test, α				Level of	Significanc	e for One-T	ailed Test, α	
df	0.10	0.05	0.025	0.01	0.005	0.0005	df	0.10	0.05	0.025	0.01	0.005	0.0005
		Level of	Significanc	e for Two-T	ailed Test, a			Level of Significance for Two-Tailed Test, α					
	0.20	0.10	0.05	0.02	0.01	0.001		0.20	0.10	0.05	0.02	0.01	0.001
1	3.078	6.314	12.706	31.821	63.657	636.619	36	1.306	1.688	2.028	2.434	2.719	3.582
2	1.886	2.920	4.303	6.965	9.925	31.599	37	1.305	1.687	2.026	2.431	2.715	3.574
3	1.638	2.353	3.182	4.541	5.841	12.924	38	1.304	1.686	2.024	2.429	2.712	3.566
4	1.533	2.132	2.776	3.747	4.604	8.610	39	1.304	1.685	2.023	2.426	2.708	3.558
5	1.476	2.015	2.571	3.365	4.032	6.869	40	1.303	1.684	2.021	2.423	2.704	3.551
6	1.440	1.943	2.447	3.143	3.707	5.959	41	1.303	1.683	2.020	2.421	2.701	3.544
7	1.415	1.895	2.365	2.998	3.499	5.408	42	1.302	1.682	2.018	2.418	2.698	3.538
8	1.397	1.860	2.306	2.896	3.355	5.041	43	1.302	1.681	2.017	2.416	2.695	3.532
9	1.383	1.833	2.262	2.821	3.250	4.781	44	1.301	1.680	2.015	2.414	2.692	3.526
10	1.372	1.812	2.228	2.764	3.169	4.587	45	1.301	1.679	2.014	2.412	2.690	3.520
11	1.363	1.796	2.201	2.718	3.106	4.437	46	1.300	1.679	2.013	2.410	2.687	3.515
12	1.356	1.782	2.179	2.681	3.055	4.318	47	1.300	1.678	2.012	2.408	2.685	3.510
13	1.350	1.771	2.160	2.650	3.012	4.221	48	1.299	1.677	2.011	2.407	2.682	3.505
14	1.345	1.761	2.145	2.624	2.977	4.140	49	1.299	1.677	2.010	2.405	2.680	3.500
15	1.341	1.753	2.131	2.602	2.947	4.073	50	1.299	1.676	2.009	2.403	2.678	3.496
16	1.337	1.746	2.120	2.583	2.921	4.015	51	1.298	1.675	2.008	2.402	2.676	3.492
17	1.333	1.740	2.110	2.567	2.898	3.965	52	1.298	1.675	2.007	2.400	2.674	3.488
18	1.330	1.734	2.101	2.552	2.878	3.922	53	1.298	1.674	2.006	2.399	2.672	3.484
19	1.328	1.729	2.093	2.539	2.861	3.883	54	1.297	1.674	2.005	2.397	2.670	3.480
20	1.325	1.725	2.086	2.528	2.845	3.850	55	1.297	1.673	2.004	2.396	2.668	3.476
21	1.323	1.721	2.080	2.518	2.831	3.819	56	1.297	1.673	2.003	2.395	2.667	3.473
22	1.321	1.717	2.074	2.508	2.819	3.792	57	1.297	1.672	2.002	2.394	2.665	3.470
23	1.319	1.714	2.069	2.500	2.807	3.768	58	1.296	1.672	2.002	2.392	2.663	3.466
24	1.318	1.711	2.064	2.492	2.797	3.745	59	1.296	1.671	2.001	2.391	2.662	3.463
25	1.316	1.708	2.060	2.485	2.787	3.725	60	1.296	1.671	2.000	2.390	2.660	3.460
26	1.315	1.706	2.056	2.479	2.779	3.707	61	1.296	1.670	2.000	2.389	2.659	3.457
27	1.314	1.703	2.052	2.473	2.771	3.690	62	1.295	1.670	1.999	2.388	2.657	3.454
28	1.313	1.701	2.048	2.467	2.763	3.674	63	1.295	1.669	1.998	2.387	2.656	3.452
29	1.311	1.699	2.045	2.462	2.756	3.659	64	1.295	1.669	1.998	2.386	2.655	3.449
30	1.310	1.697	2.042	2.457	2.750	3.646	65	1.295	1.669	1.997	2.385	2.654	3.447
31	1.309	1.696	2.040	2.453	2.744	3.633	66	1.295	1.668	1.997	2.384	2.652	3.444
32	1.309	1.694	2.037	2.449	2.738	3.622	67	1.294	1.668	1.996	2.383	2.651	3.442
33	1.308	1.692	2.035	2.445	2.733	3.611	68	1.294	1.668	1.995	2.382	2.650	3.439
34	1.307	1.691	2.032	2.441	2.728	3.601	69	1.294	1.667	1.995	2.382	2.649	3.437
35	1.306	1.690	2.030	2.438	2.724	3.591	70	1.294	1.667	1.994	2.381	2.648	3.435


B.4 Critical Values of the *F* **Distribution** at a 5 Percent Level of Significance

							0	egrees o	f Freedo	m for the	e Numera	tor					
		1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40
	1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251
	2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5
	3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46
	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04
	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83
ŗ	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66
inat	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53
лоп	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43
Der	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34
he	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27
or t	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20
Degrees of Freedom for the Denominator	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15
eed	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10
Ē	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06
s of	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03
ree	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99
Deg	21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96
	22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94
	23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91
	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89
	25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87
	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69
	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59
	120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50
	00	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39
	×	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39

B.3 Critical Values of Chi-Square

This table contains the values of χ^2 that correspond to a specific right-tail area and specific number of degrees of freedom.

Example: With 17 df and a .02 area in the upper tail, $\chi^2 = 30.995$

Degrees of		Right-Tai	l Area	
Freedom, df	0.10	0.05	0.02	0.01
1	2.706	3.841	5.412	6.635
2	4.605	5.991	7.824	9.210
3	6.251	7.815	9.837	11.345
4	7.779	9.488	11.668	13.277
5	9.236	11.070	13.388	15.086
6	10.645	12.592	15.033	16.812
7	12.017	14.067	16.622	18.475
8	13.362	15.507	18.168	20.090
9	14.684	16.919	19.679	21.666
10	15.987	18.307	21.161	23.209
11	17.275	19.675	22.618	24.725
12	18.549	21.026	24.054	26.217
13	19.812	22.362	25.472	27.688
14	21.064	23.685	26.873	29.141
15	22.307	24.996	28.259	30.578
16	23.542	26.296	29.633	32.000
17	24.769	27.587	30.995	33.409
18	25.989	28.869	32.346	34.805
19	27.204	30.144	33.687	36.191
20	28.412	31.410	35.020	37.566
21	29.615	32.671	36.343	38.932
22	30.813	33.924	37.659	40.289
23	32.007	35.172	38.968	41.638
24	33.196	36.415	40.270	42.980
25	34.382	37.652	41.566	44.314
26	35.563	38.885	42.856	45.642
27	36.741	40.113	44.140	46.963
28	37.916	41.337	45.419	48.278
29	39.087	42.557	46.693	49.588
30	40.256	43.773	47.962	50.892

	Two-Ta	iled Test	One-Tai	iled Test
n	$\alpha = .05$	$\alpha = .01$	$\alpha = .05$	$\alpha = .01$
5			0	
6	0		2	
7	2		2 3	0
8	3	0	5	1
9	5	1	8	3
10	8	3	10	5
11	10	5	13	7
12	13	7	17	9
13	17	9	21	12
14	21	12	25	15
15	25	15	30	19
16	29	19	35	23
17	34	23	41	27
18	40	27	47	32
19	46	32	53	37
20	52	37	60	43
21	58	42	67	49
22	65	48	75	55
23	73	54	83	62
24	81	61	91	69
25	89	68	100	76
26	98	75	110	84
27	107	83	119	92
28	116	91	130	101
29	126	100	140	110
30	137	109	151	120

Critical Values of the Wilcoxon Signed Ranks Test Statistic