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Abstract: In this paper, a generalization of the modified inverse Rayleigh distribution called the new exponentiated generalized
modified inverse Rayleigh distribution is proposed and studied. Various sub-models of the new distribution were discussed and statistical
properties such as the quantile function, moment, moment generating function, Rényi entropy, reliability measure and order statistics
were derived. The parameters of the new model were estimatedusing the method of maximum likelihood estimation and simulations
were performed to assess the stability of the parameters with regards to the estimation method.
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1 Introduction

The selection of an appropriate distribution for modeling
data sets plays an essential role in statistical analysis and
forms the foundation to several parametric inferences.
However, most of the data sets arising from different
fields may not necessarily follow the existing
distributions. Thus, researchers in the area of distribution
theory have proposed several modifications of the existing
distributions to enhance their performance in modeling
data sets. Some of these modified distributions in
literature include: generalized Weibull-exponential
distribution [20], transmuted Erlang-truncated
exponential distribution [18], odd generalized exponential
generalized linear exponential distribution [12], weighted
Weibull distribution [14], generalized Erlang-truncated
exponential distribution [16], serial Weibull-Rayleigh
distribution [15], McDonald exponentiated gamma
distribution [1], Kumaraswamy transmuted modified
Weibull distribution [13] and Kumaraswamy generalized
power Weibull distribution [21]. These generalized
models have the potential of modeling data sets with
moderate and heavy tails, monotonic and non-monotonic
failure rates. In addition, the generalization of the existing
models tends to improve the flexibility and
goodness-of-fit of the distributions against the intuitionof
model parsimony in many cases.
Recently, [7] proposed the modified inverse Rayleigh

(MIR) distribution and studied its theoretical properties.
The cumulative distribution function (CDF) of this
distribution is given by

F(x) = e
−
(

α
x +

θ
x2

)

, x > 0, (1)

whereα > 0 andθ > 0 are scale parameters.
This newly proposed distribution is suitable for modeling
reliability pattern for engineering system or any process
that exhibits either increasing or decreasing failure rates
due to the flexibility of its hazard function in handling
such failure rates. The MIR distribution contains both the
inverse Rayleigh (IR) distribution and the inverse
exponential (IE) distribution as sub-models. The MIR
distribution is a special case of the modified inverse
Weibull (MIW) distribution proposed by [8] with the
following CDF

F(x) = e−(
α
x +

θ
xη ), x > 0, (2)

whereα > 0, θ > 0 are scale parameters andη > 0 is a
shape parameter.
The two parameters of the MIR distribution are all scale
parameters. However, to control skewness and kurtosis, to
model data with heavy tails and non-monotonic failure
rates there is need for a distribution to have shape
parameters. In order to address these issues and increase
the flexibility of the MIR distribution, [9] studied the
transmuted MIR distribution by adding a transmuting
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parameter to the existing baseline distribution. However,
several modifications of the MIR distribution are yet to be
proposed in literature using the various methods for
developing generalized classes of distributions. Some of
these methods of inducting new parameters into existing
distributions include; beta-generated method [5], the
exponentiated generalized class of distribution approach
[4], the transformed-transformer (T-X) method [2], and
the exponentiatedT-X method [3].
[17] defined the CDF of the exponentiated generalized
exponential-X family of distribution as

G(x) =
∫ − log

[

1−
(

1−F̄d (x)
)c]

0
λe−λ t dt = 1−

{

1−
[

1− (1−F(x))d
]c}λ

, (3)

where the random variableT ∈ [0, ∞) has an exponential
distribution with probability density function (PDF)
λ e−λ t , λ > 0, t > 0, X ∈ R is a random variable with
CDF F(x), F̄(x) = 1−F(x), andc > 0, d > 0 are shape
parameters.
With the motivation of developing new distributions with
tractable CDF to facilitate simulation, modeling data with
different failure rates, generating distributions with
heavier tails and modeling data from many field of studies
with ease, this study proposes and investigates the
theoretical properties of a new distribution called the new
exponentiated generalized MIR (NEGMIR) distribution.
The rest of the paper is organized as follows: in section 2,
the CDF, PDF, survival function and hazard function of
the new distribution were defined. In section 3, some
sub-models of the new distribution were discussed. In
section 4, statistical properties of the new model were
presented. In section 5, the parameters of the new
distribution were estimated using maximum likelihood
estimation. In section 6, simulation was performed to
examine the stability of the model parameters. In section
7, applications of the new model was demonstrated using
real data set. Finally, the concluding remarks of the study
was given in section 8.

2 New Model

Suppose the random variableX has the CDF

e
−
(

α
x +

θ
x2

)

, x > 0, α ≥ 0, θ ≥ 0, (α + θ > 0), then the
CDF of the NEGMIR distribution is given by

G(x) = 1−
{

1−
[

1−
(

1− e
−
(

α
x +

θ
x2

))d
]c}λ

,x > 0,

(4)
where α ≥ 0, θ ≥ 0 are scale parameters and
λ > 0, c > 0, d > 0 are shape parameters. For positive
integersλ andc, the physical interpretation to the CDF of
the NGMIR distribution is as follows: given the lifetime
of series-parallel system with independent components

having CDF 1− (1 − e
−
(

α
x +

θ
x2

)

)d . Suppose that the
system is made up ofλ independent components series
subsystems and each of the subsystems consists ofc

independent parallel components. Suppose that

Xi j ∼ 1− (1− e
−
(

α
x +

θ
x2

)

)d , for 1≤ i ≤ c and 1≤ j ≤ λ ,
represents the lifetime of theith component in thejth

subsystem andX is the lifetime of the entire system.
Then,

P(X ≤ x) = 1− [1−P(X11≤ x, . . .≤ X1c)]
λ

= 1− [1−P
c(X11 ≤ x)]λ

= 1−
{

1−
[

1−
(

1− e
−
(

α
x +

θ
x2

))d
]c}λ

,x > 0.

By differentiating equation (4), the PDF of the
NEGMIR distribution is given by

g(x) = λcd

(

α
x2 +

θ
x3

)

e
−
(

α
x + 2θ

x2

)
(

1− e
−
(

α
x + θ

x2

)
)d−1



1−
(

1− e
−
(

α
x + θ

x2

)
)d




c−1

×







1−



1−
(

1− e
−
(

α
x + θ

x2

)
)d




c




λ−1

, x > 0. (5)

Lemma 1. The PDF of the NEGMIR distribution can be
written in a mixture form as

g(x) = λcd

(

α
x2 +

2θ
x3

) ∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ξi jkm x−2me−(k+1)( α
x ), x > 0, (6)

where

ξi jkm =
(−1)i+ j+k+m (k+1)m θ m Γ (λ )Γ (c(i+1))Γ (d( j+1))

i! j! k! m! Γ (λ − i)Γ (c(i+1)− j)Γ (d( j+1)− k)
, Γ (a+1) = a!

Proof. For a real non-integerη > 0, a series representation

for (1− z)η−1, for |z|< 1 is

(1− z)η−1 =
∞

∑
i=0

(−1)i Γ (η)
i! Γ (η − i)

zi. (7)

Using the series expansion in equation (7) thrice and the

fact that 0< 1− e
−
(

α
x +

θ
x2

)

< 1, we have

g(x) = λcd

(

α
x2 +

2θ
x3

) ∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

(−1)i+ j+k Γ (λ )Γ (c(i+1))Γ (d( j+1))
i! j! k! Γ (λ − i)Γ (c(i+1)− j)Γ (d( j+1)− k)

× e
−(k+1)

(

α
x + θ

x2

)

. (8)

But

e
−(k+1)

(

θ
x2

)

=
∞

∑
m=0

(−1)m (k+1)m θ m x−2m

m!
. (9)

Substituting equation (9) into equation (8), the mixture
representation of the PDF of the NEGMIR distribution is
obtained as

g(x) = λcd

(

α
x2 +

2θ
x3

) ∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ξi jkm x−2me−(k+1)( α
x ), x > 0.

Figure 1 displays the different shapes of the NEGMIR
distribution PDF. The PDF of NEGMIR distribution can
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Fig. 1: NEGMIR distribution density function

be symmetric, left skewed, right skewed, J-shape,
reversed J-shape or unimodal with small and large values
of skewness and kurtosis for different parameter values.
The survival function of the NEGMIR distribution is

S(x) =

{

1−
[

1−
(

1− e
−
(

α
x +

θ
x2

))d
]c}λ

,x > 0, (10)

and the hazard function is given by

τ(x) =

λ cd

(

α
x2 + 2θ

x3

)

e
−
(

α
x + θ

x2

)






1− e

−
(

α
x + θ

x2

)







d−1







1−






1− e

−
(

α
x + θ

x2

)







d







c−1

1−









1−






1− e

−
(

α
x + θ

x2

)







d







c , x > 0.

(11)

The plots of hazard function shown in Figure2 reveal
different shapes such as monotonically decreasing,
monotonically increasing, unimodal or upside down
bathtub for different combination of the values of the
parameters. These features make the NEGMIR
distribution suitable for modeling different failure rates
that are more likely to be encountered in real life
situation.

Fig. 2: Plots of the NEGMIR distribution hazard function

3 Sub-models

The NEGMIR distribution houses a number of
sub-models that can be used in different fields for
modeling data sets. These include: exponentiated
generalized modified inverse Rayleigh (EGMIR)
distribution, exponentiated generalized exponential
inverse Rayleigh (EGEIR) distribution, exponentiated
generalized inverse Rayleigh (EGIR) distribution,
exponentiated generalized exponential inverse
exponential (EGEIE) distribution, exponentiated
generalized inverse exponential (EGIE) distribution, MIR
distribution, IR distribution and IE distribution. A
summary of the various sub-models of the NEGMIR
distribution are given in Table1

Table 1: Summary of sub-models from the NEGMIR
distribution

Distribution λ α θ c d
EGMIR 1 α θ c d
EGEIR λ 0 θ c d
EGIR 1 0 θ c d
EGEIE λ α 0 c d
EGIE 1 α 0 c d
MIR 1 α θ 1 1
IR 1 0 θ 1 1
IE 1 α 0 1 1

4 Statistical Properties

In this section, the quantile, moment, moment generating
function, reliability measure, entropy and order statistics
were derived. Apart from the quantile function, all other
statistical properties were derived using the parameter
conditionsα > 0, θ > 0, λ > 0, c > 0 andd > 0.

4.1 Quantile Function

In order to simulate random numbers from the NEGMIR
distribution, it is important to develop its quantile
function.
Lemma 2. The quantile function of the NEGMIR
distribution forp ∈ (0, 1) is

QX (p) =















































































2θ

−α+

√

√

√

√

√

√

√

√

α2−4θ log



















1−






1−
(

1−(1−p)
1
λ
) 1

c






1
d



















, α > 0, θ > 0,

√

√

√

√

√

√

θ

− log



















1−






1−
(

1−(1−p)
1
λ
) 1

c






1
d



















, α = 0, θ > 0,

α

− log



















1−






1−
(

1−(1−p)
1
λ
) 1

c






1
d



















, α > 0, θ = 0.

(12)
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For the case ofα > 0 andθ > 0, the proof of the quantile
is as follows.
Proof. By definition, the quantile function is given by

G(xp) = P(X ≤ xp) = p.

Hence

θ
x2

p
+

α
xp

+ log







1−
[

1−
(

1− (1− p)
1
λ
)

1
c
]

1
d







= 0.

(13)
Lettingxp =QX (p) in equation (13) and solving forQX (p)
gives

QX (p) =
2θ

−α +

√

√

√

√

√

√

α2−4θ log











1−



1−
(

1− (1− p)
1
λ

)
1
c





1
d










.

For p = 0.25, 0.5 and 0.75, we get the first quartile, the
median and the third quartile of the NGMIR distribution
respectively.

4.2 Moment

Proposition 1.
The rth non-central moment of the NEGMIR

distribution is given by

µ
′
r = λcd

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ξ ∗
i jkm

[

Γ (2m− r+1)+
2θ

α2(k+1)
Γ (2m− r+2)

]

, (14)

where r=1,2,. . . and

ξ ∗
i jkm =

(−1)i+ j+k+m (k+1)r−m−1 θ m α r−2m Γ (λ )Γ (c(i+1))Γ (d( j+1))
i! j! k! m! Γ (λ − i)Γ (c(i+1)− j)Γ (d( j+1)− k)

.

Proof. By definition

µ
′
r =

∫ ∞

0
xrg(x)dx

=

∫ ∞

0
xrλcd

(

α
x2 +

2θ
x3

) ∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ξi jkm x−2me−(k+1)( α
x )dx

= λcd
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ξi jkm

∫ ∞

0
xr

(

α
x2 +

2θ
x3

)

x−2me−(k+1)( α
x )dx

= λcd
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ξi jkm

∫ ∞

0

(

αxr−2m−2+2θxr−2m−3)e−(k+1)( α
x )dx

= λcd
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ξi jkm

∫ ∞

0
αxr−2m−2e−(k+1)( α

x )dx

+λcd
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ξi jkm

∫ ∞

0
2θxr−2m−3e−(k+1)( α

x )dx

Letting y = α(k+1)
x implies that ifx = 0, y = ∞ and if x =

∞, y = 0. Also, x =
α(k+1)

y anddx = − x2dy
α(k+1) . Using the

identityΓ (a) =
∫ ∞

0 ta−1e−tdt,

µ
′
r = λcd

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ξi jkm ×

[

∫ ∞

0

1
(k+1)

(

α(k+1)
y

)r−2m

e−ydy+
∫ ∞

0

2θ
α(k+1)

(

α(k+1)
y

)r−2m−1

e−ydy

]

=λcd
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ξi jkm ×

[

α r−2m(k+1)r−2m−1Γ (2m− r+1)+2θα r−2m−2(k+1)r−2m−2Γ (2m− r+2)
]

= λcd
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ξ ∗
i jkm

[

Γ (2m− r+1)+
2θ

α2(k+1)
Γ (2m− r+2)

]

.

4.3 Moment Generating Function

Proposition 2.The moment generating function (MGF) of
the NEGMIR distribution is

MX (z) = λcd
∞

∑
r=0

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ξ ∗∗
i jkm

[

Γ (2m− r+1)+
2θ

α2(k+1)
Γ (2m− r+2)

]

,

(15)
where

ξ ∗∗
i jkm =

(−1)i+ j+k+m zr (k+1)r−m−1 θ m α r−2m Γ (λ )Γ (c(i+1))Γ (d( j+1))
i! j! k! m! r! Γ (λ − i)Γ (c(i+1)− j)Γ (d( j+1)− k)

.

Proof. By definition

MX (z) =
∫ ∞

0
ezxg(x)dx

=
∞

∑
r=0

zr

r!

∫ ∞

0
xrg(x)dx

= λcd
∞

∑
r=0

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ξ ∗∗
i jkm

[

Γ (2m− r+1)+
2θ

α2(k+1)
Γ (2m− r+2)

]

.

Note that the following series expansionezx = ∑∞
r=0

zrxr

r!
was employed in the proof.

4.4 Entropy

In this subsection, the Rényi entropy of the random
variableX is derived [19].
Proposition 3.The Rényi entropy of a random variableX
having the NEGMIR distribution is

IR(δ ) =
1

1−δ
log

[

(αλcd)δ
∞

∑
i=

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

ζi jkmn
Γ (2(δ +m)+n−1)

[α(δ + k)]2(δ+m)+n−1

]

,

(16)

whereδ 6= 1, δ > 0 and

ζi jkmn =

(−1)i+ j+k+mθ m(δ + k)m
(

2θ
α
)m

Γ (δ +1)Γ (δ (λ −1)+1)Γ (c(δ + i)−δ +1)Γ (d(δ + j)−δ +1)

i! j!k!m!Γ (δ −n+1)Γ (δ (λ −1)− i+1)Γ (c(δ + i)−δ − j+1)Γ (d(δ + j)−δ − k+1)
.

Proof. The Rényi entropy [19] is defined as

IR(δ ) =
1

1− δ
log

[

∫ ∞

0
gδ (x)dx

]

, δ 6= 1, δ > 0.

c© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 1, 113-124 (2018) /www.naturalspublishing.com/Journals.asp 117

Using the same method for expanding the density,

gδ (x) = (αλcd)δ
∞

∑
i=

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

ζi jkmn

(

1
x

)2(δ+m)+n

e−(δ+k)( α
x ).

Hence

IR(δ ) =
1

1−δ
×

log



(αλ cd)δ
∞
∑
i=

∞
∑
j=0

∞
∑

k=0

∞
∑

m=0

∞
∑

n=0
ζi jkmn

∫ ∞

0

(

1
x

)2(δ+m)+n
e−(δ+k)

( α
x
)

dx





Letting y = α(δ+k)
x , when x = 0, y = ∞ and when

x = ∞, y = 0. Also, 1
x = y

α(δ+k) anddx = −x2dy
α(δ+k) . Thus

IR(δ ) =
1

1−δ
log



(αλ cd)δ
∞
∑
i=

∞
∑
j=0

∞
∑

k=0

∞
∑

m=0

∞
∑

n=0
ζi jkmn

∫ ∞

0

y2(δ+m)+n−2

[α(δ + k)]2(δ+m)+n−1
e−y dy





=
1

1−δ
log



(αλ cd)δ
∞
∑
i=

∞
∑
j=0

∞
∑

k=0

∞
∑

m=0

∞
∑

n=0
ζi jkmn

Γ (2(δ +m)+n−1)

[α(δ + k)]2(δ+m)+n−1



 ,

whereδ 6= 1 andδ > 0.

The Rényi entropy tends to Shannon entropy asδ → 1.

4.5 Reliability

Proposition 4. If X1 is the strength of a component and
X2 is the stress, such that both follow the NEGMIR
distribution with the same parameters, then the reliability
is given by

R = 1−αλcd
∞

∑
i=

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ςi jkm

[

Γ (2(m+1)−1)

[α(k+1)]2(m+1)−1
+

2θ Γ (2(m+1))

α [α(k+1)]2(m+1)

]

,

(17)

where

ςi jkm =
(−1)i+ j+k+m θ m (k+1)m Γ (λ +1)Γ (c(i+1))Γ (d( j+1))

i! j! k! m! Γ (λ − i+1)Γ (c(i+1)− j)Γ (d( j+1)− k)
.

Proof. By definition

R = P(X2 < X1)

=
∫ ∞

0
g(x)G(x)dx

= 1−
∫ ∞

0
g(x)S(x)dx

= 1−λcd
∞

∑
i=

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ςi jkm

∫ ∞

0
αx−2(m+1)e−(k+1)( α

x )dx

+1−λcd
∞

∑
i=

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ςi jkm

∫ ∞

0
2θx−(3+2m)e−(k+1)( α

x )dx

Lettingy= α(k+1)
x , whenx=0, y=∞ and whenx=∞, y=

0. Also,x = α(k+1)
y anddx = −x2dy

α(k+1) . Thus

R = 1−λcd
∞

∑
i=

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ςi jkm

∫ ∞

0

αy2(m+1)−2

[α(k+1)]2(m+1)−1
e−ydy

+1−λcd
∞

∑
i=

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ςi jkm

∫ ∞

0

2θy2m+1

[α(k+1)]2(m+1)
e−ydy

= 1−λcd
∞

∑
i=

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ςi jkm

[

αΓ (2(m+1)−1)

[α(k+1)]2(m+1)−1
+

2θΓ (2(m+1))

[α(k+1)]2(m+1)

]

= 1−αλcd
∞

∑
i=

∞

∑
j=0

∞

∑
k=0

∞

∑
m=0

ςi jkm

[

Γ (2(m+1)−1)

[α(k+1)]2(m+1)−1
+

2θ Γ (2(m+1))

α [α(k+1)]2(m+1)

]

.

4.6 Order Statistics

Order statistics have a very useful role in statistics and
probability. Hence, in this section the PDF ofpth order
statistic of the NEGMIR distribution was developed.
SupposeX1, X2, . . . , Xn is a random sample having the
NEGMIR distribution andX1: n < X2: n < .. . < Xn : n are
order statistics obtained from the sample. The PDF,
gp : n(x), of thepth order statisticXp : n is

gp:n(x) =
1

B(p, n− p+1)
[G(x)]p−1 [1−G(x)]n−p g(x),

where G(x) and g(x) are the CDF and PDF of the
NEGMIR distribution respectively, andB(·, ·) is the beta
function. Since 0< G(x) < 1 for x > 0, using the
binomial series expansion of[1 − G(x)]n−p, which is
given by

[1−G(x)]n−p =
n−p

∑
l=0

(−1)l
(

n− p
l

)

[G(x)]l ,

we have

gp:n(x) = 1
B(p,n−p+1) ∑n−p

l=0 (−1)l
(n−p

l

)

[G(x)]p+l−1g(x).
(18)

Substituting the CDF and PDF of the NEGMIR
distribution into equation (18) gives

gp:n(x) =
n−p

∑
l=0

p+l−1

∑
m=0

(−1)l+m n! (p+ l−1)!
l! (m+1)! (p−1)! (n− p− l)! (p+ l−m−1)!

g(x;α, λm+1, θ , c, d), (19)

where g(x;α, λm+1, θ , c, d) is the PDF of the NEGMIR
distribution with parameters α, θ , c, d and
λm+1 = λ (m+1). It is clear to see that the density of the
pth order statistic given in equation (19) is a weighted
function of the NEGMIR distribution with different shape
parameters.
Proposition 5. The rth non-central moment of thepth

order statistic is given by

µ
′(p:n)
r = λcd

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
q=0

n−p

∑
l=0

p+l−1

∑
m=0

ϕi jklmq

[

Γ (2q− r+1)+
2θ Γ (2q− r+2)

α2(k+1)

]

,

(20)
wherer = 1,2, . . . and

ϕi jklmq =
(−1)i+ j+k+l+m+q(k+1)r−q−1θ qαr−2qΓ (n+1)Γ (p+ l)Γ (λ (m+1))Γ (c(i+1))Γ (d( j+1))

i! j!k!l!m!q!(p−1)!(n− p− l)!Γ(p+ l −m)Γ (λ (m+1)− i)Γ (c(i+1)− j)Γ (d( j+1)− k)
.

Proof. By definition

µ
′(p:n)
r =

∫ ∞

0
xr gp:n(x)dx

=

∫ ∞

0
xr

n−p

∑
l=0

p+l−1

∑
m=0

(−1)l+m n! (p+ l−1)!
l! (m+1)! (p−1)! (n− p− l)! (p+ l−m−1)!

g(x;α, λm+1, θ , c, d)dx

=
n−p

∑
l=0

p+l−1

∑
m=0

(−1)l+m n! (p+ l−1)!
l! (m+1)! (p−1)! (n− p− l)! (p+ l−m−1)!

∫ ∞

0
xr g(x;α, λm+1, θ , c, d)dx.

Employing the same method for deriving the non-central
moment, we obtain

µ
′(p:n)
r = λcd

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
q=0

n−p

∑
l=0

p+l−1

∑
m=0

ϕi jklmq

[

Γ (2q− r+1)+
2θ Γ (2q− r+2)

α2(k+1)

]

.
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5 Parameter Estimation

In this section, the estimation of the unknown parameter
vectorϑϑϑ = (λ , α, θ , c, d)

′
using the method of maximum

likelihood estimation was carried out. LetX1, X2, . . . , Xn
be a random sample of sizen from NEGMIR distribution.

Let zi = e
−
(

α
xi
+ θ

x2
i

)

andz̄i = 1− e
−
(

α
xi
+ θ

x2
i

)

, then the log-
likelihood function is given by

ℓ= n log(cdλ )+(d −1)
n
∑

i=1
log(z̄i)+(c−1)

n
∑

i=1
log(1− z̄d

i )+(λ −1)
n
∑

i=1
log
[

1− (1− z̄d
i )

c
]

+
n
∑

i=1
log

(

α
x2
i
+

θ
x3
i

)

−
n
∑

i=1

(

α
xi

+
θ
x2
i

)

. (21)

By differentiating the log-likelihood function with respect
to the parametersλ , c, d, α andθ , the score functions are
obtained as

∂ ℓ
∂ λ

=
n
λ
+

n

∑
i=1

log
[

1− (1− z̄d
i )

c
]

, (22)

∂ ℓ
∂ c

=
n
c
+

n

∑
i=1

log
(

1− z̄d
i

)

− (λ −1)
n

∑
i=1

(1− z̄d
i )

c log(1− z̄d
i )

1− (1− z̄d
i )

c
, (23)

∂ ℓ
∂ d

=
n
d
+

n

∑
i=1

log(z̄i)− (c−1)
n

∑
i=1

z̄d
i log(z̄i)

1− z̄d
i

+(λ −1)
n

∑
i=1

cz̄d
i (1− z̄d

i )
c−1 log(z̄i)

1− (1− z̄d
i )

c
,

(24)

∂ ℓ
∂ α

=
n

∑
i=1

1

x2
i

(

α
x2
i
+ θ

x3
i

) −
n

∑
i=1

1
xi

+(d −1)
n

∑
i=1

zi

xi z̄i
− (c−1)

n

∑
i=1

dzi z̄
d−1
i

xi(1− z̄d
i )

+

(λ −1)
n

∑
i=1

cdzi z̄
d−1
i (1− z̄d

i )
c−1

xi
[

1− (1− z̄d
i )

c
] , (25)

∂ ℓ
∂ θ

=
n

∑
i=1

1

x3
i

(

α
x2
i
+ θ

x3
i

) −
n

∑
i=1

1
x2

i

+(d −1)
n

∑
i=1

zi

x2
i z̄i

− (c−1)
n

∑
i=1

dzi z̄
d−1
i

x2
i (1− z̄d

i )
+

(λ −1)
n

∑
i=1

cdzi z̄
d−1
i (1− z̄d

i )
c−1

x2
i

[

1− (1− z̄d
i )

c
] . (26)

Equating the score functions to zero and solving for the
unknown parameters in the system of non-linear
equations numerically yields the maximum likelihood
estimates of the parameters. For the purpose of
constructing confidence intervals for the parameters, the
observed information matrixJ(ϑϑϑ) is used due to the
complex nature of the expected information matrix. The
observed information matrix is given by

J(ϑϑϑ) =−

















∂ 2ℓ
∂λ 2

∂ 2ℓ
∂λ ∂c

∂ 2ℓ
∂λ ∂d

∂ 2ℓ
∂λ ∂α

∂ 2ℓ
∂λ ∂θ

∂ 2ℓ
∂c2

∂ 2ℓ
∂c∂d

∂ 2ℓ
∂c∂α

∂ 2ℓ
∂c∂θ

∂ 2ℓ
∂d2

∂ 2ℓ
∂d∂α

∂ 2ℓ
∂d∂θ

∂ 2ℓ
∂α2

∂ 2ℓ
∂α∂θ

∂ 2ℓ
∂θ2

















.

The elements of the observed information matrix are
given in the appendix. When the usual regularity

conditions are satisfied and that the parameters are within
the interior of the parameter space, but not on the
boundary, the distribution of

√
n(ϑ̂ϑϑ −ϑϑϑ) converges to the

multivariate normal distributionN5(000, I−1(ϑϑϑ)), where
I(ϑϑϑ) is the expected information matrix. The asymptotic
behavior remains valid whenI(ϑϑϑ) is replaced by the
observed information matrix evaluated atJ(ϑ̂ϑϑ). The
asymptotic multivariate normal distribution
N5(000,J−1(ϑ̂ϑϑ)) is a very useful tool for constructing an
approximate 100(1−ψ)% two-sided confidence intervals
for the model parameters, whereψ is the significance
level.

6 Monte carlo Simulation

In this section, the properties of the maximum likelihood
estimators of the parameters of the NEGMIR distribution
were examined using simulation. The average bias (AB),
the root mean square error (RMSE) and the average width
(AW) of the parameter values were observed. The
quantile function given in equation (12) was used to
generate random samples from the NEGMIR distribution.
The simulation experiment was repeated forN = 1,000
times each with sample sizes
n = 25, 50, 75, 100, 200, 300, 600 and parameter values
I : λ = 0.5, α = 0.1, θ = 0.8, c = 0.4, d = 0.5) and
II : λ = 0.4, α = 0.5, θ = 0.5, c = 2.5, d = 1.5. From
Table 2, both the AB and the RMSE of the parameters
decreases to zero as the sample size increases. Also, the
AW for the confidence intervals of the parameters
decreases as the sample size increases. Thus, the
maximum likelihood estimates and their asymptotic
properties can be employed for estimating and
constructing confidence intervals even for reasonably
small sample size.

7 Applications

In this section, applications of the NEGMIR distribution
were demonstrated using two real data sets. The
goodness-of-fit of the NEGMIR distribution was
compared with that of its sub-models and the new
generalized inverse Weibull (NGIW) distribution using
Kolmogorov-Smirnov (K-S) statistic and Cramér-von
Misses distance (W∗) values, as well as Akaike
information criterion (AIC), corrected Akaike
information criterion (AICc) and Bayesian information
criterion (BIC). The PDF of the NGIW distribution is
given by

g(x) = β

(

α +ηθ
(

1
x

)η−1
)

(

1
x

)2
e

(

− α
x −θ

(

1
x

)η)




1− e

(

− α
x −θ

(

1
x

)η)





β−1

, x > 0, (27)

whereη > 0, β > 0 are the shape parameters andα >

0, θ > 0 are scale parameters of the distribution.
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Table 2: Monte Carlo simulation results: AB, RMSE and AW
I II

Parameter n AB RMSE AW AB RMSE AW
λ 25 0.533 0.975 17.759 0.430 2.404 39.319

50 0.448 0.827 14.581 0.222 1.298 20.377
75 0.392 0.756 12.071 0.251 1.089 19.377
100 0.377 0.702 10.353 0.159 0.625 12.140
200 0.383 0.692 9.412 0.167 0.607 11.807
300 0.333 0.573 7.749 0.190 0.607 12.990
600 0.267 0.501 5.482 0.183 0.507 9.329

α 25 0.389 0.523 6.935 -0.103 0.454 26.910
50 0.341 0.476 5.236 -0.109 0.409 15.649
75 0.301 0.444 4.524 -0.092 0.384 14.265
100 0.292 0.427 4.047 -0.113 0.365 11.114
200 0.239 0.392 2.762 -0.076 0.321 11.240
300 0.223 0.361 2.470 -0.043 0.297 13.128
600 0.157 0.307 1.539 -0.020 0.247 11.125

θ 25 0.191 0.701 10.047 -0.018 0.419 37.024
50 0.032 0.433 7.782 0.050 0.380 25.619
75 -0.009 0.378 7.046 0.103 0.393 22.394
100 -0.035 0.334 6.382 0.132 0.382 20.964
200 -0.079 0.287 4.757 0.128 0.352 21.270
300 -0.082 0.272 4.697 0.204 0.367 22.982
600 -0.073 0.247 4.098 0.026 0.351 18.444

c 25 0.050 0.222 6.062 3.747 9.793 508.001
50 0.059 0.184 4.900 1.801 4.460 241.696
75 0.064 0.161 4.507 1.021 3.243 204.629
100 0.063 0.157 4.213 0.758 2.839 141.913
200 0.081 0.167 3.170 0.131 1.794 98.608
300 0.076 0.158 3.094 -0.159 1.430 81.678
600 0.069 0.149 2.584 -0.422 0.977 59.848

d 25 -0.123 0.010 5.551 0.089 0.028 29.222
50 -0.120 0.008 4.413 0.046 0.024 21.361
75 -0.107 0.008 4.070 -0.018 0.023 19.872
100 -0.106 0.007 3.764 -0.016 0.023 20.184
200 -0.123 0.007 3.171 -0.034 0.022 18.868
300 -0.110 0.006 2.879 -0.023 0.021 19.484
600 -0.091 0.006 2.344 -0.015 0.020 17.662

Table 3: Failure times data for the air conditioning system of an aircraft

23 261 87 7 120 14 62 47 225 71

246 21 42 20 5 12 120 11 3 14

71 11 14 11 16 90 1 16 52 95

7.1 Aircraft Data

The data comprises failure times for the air conditioning
system of an aircraft from a random sample of 30
observations. The data set can be found in [11] and [10].
The data set is given in Table3.
The maximum likelihood estimates of the parameters and
their corresponding standard errors in bracket are
displayed in Table4. The parameters of the NEGMIR
distribution were all significant at the 5% significance
level.
The NEGMIR distribution provides a better to the data set
than its sub-models and the NGIW distribution. From

Table 5, the NEGMIR distribution has the highest
log-likelihood and the smallest K-S, W∗, AIC, AICc, and
BIC values compared to the other fitted models. Although
the NEGMIR distribution is the best model, the NGIW
distribution also provides a good fit to the data set.
To make a complete inference about a model, it is
necessary to reduce the number of parameters of the
model and investigate its effect on the reduced model
with regards to providing good fit to a data set. Thus, the
likelihood ratio test (LRT) was therefore performed to
compare the NEGMIR distribution with its sub-models.
The LRT statistic and their correspondingP-values in
Table6 revealed that the NGMIR distribution provides a
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Table 4: Maximum likelihood estimates of parameters and standard errors for aircraft data

Model λ̂ α̂ θ̂ ĉ d̂
NEGMIR 0.082 18.949 3.736 0.132 11.356

(0.018) (2.491) (0.851) (0.025) (1.309)
EGMIR 29.072 1.569 0.326 0.674

(12.559) (0.566) (0.133) (0.153)
NEGIR 47.262 10.089 0.897 0.003

(1.6×10−4) (0.006) (0.164) (2.54×10−3)
NEGIE 0.062 1.734 13.278 6.537

(0.016) (0.234) (14.581) (1.014)
α̂ β̂ θ̂ η̂

NGIW 7.312 0.628 0.944 150.959
(2.226) (0.150) (0.994) (158.932)

Table 5: Log-likelihood, goodness-of-fit statistics and information criteria for aircraft data

Model ℓ AIC AICc BIC K-S W∗

NEGMIR -146.520 303.046 306.698 309.882 0.1490 0.0701

EGMIR -151.920 311.842 314.342 317.312 0.2336 0.1636

NEGIR -158.360 324.723 327.223 330.192 0.3111 0.5359

NEGIE -156.420 320.840 323.340 326.309 0.2816 0.5021

NGIW -148.500 304.993 307.493 310.462 0.2270 0.1538

Table 6: Likelihood ratio test statistic for aircraft data

Model Hypotheses LRT P-values

EGMIR H0 : λ = 1 vsH1 : H0 is false 10.797 < 0.001

NEGIR H0 : α = 0 vsH1 : H0 is false 23.677 < 0.001

NEGIE H0 : θ = 0 vsH1 : H0 is false 19.794 < 0.001

good fit than its sub-models.
The asymptotic variance-covariance matrix for the
estimated parameters of the NEGMIR distribution is
given by

J−1 =











3.191×10−4 6.003×10−5 −8.433×10−3 1.347×10−2 8.209×10−4

6.003×10−5 6.306×10−4 1.052×10−2 3.744×10−2 1.416×10−2

−8.433×10−3 1.052×10−2 1.714 0.624 0.488
1.347×10−2 3.744×10−2 0.624 6.205 1.236
8.209×10−4 1.416×10−2 0.488 1.236 0.724











.

Hence, the approximate 95% confidence interval for the
parameters λ , α, θ , c and d are
[0.0468, 0.1168], [14.0665, 23.8311], [2.0681, 5.4043],
[0.0827, 0.1811] and [8.7900, 13.9218] respectively.
Figure 3 displays the empirical density and the fitted
densities of the distributions.

Fig. 3: Empirical and fitted densities plot for aircraft data

c© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 1, 113-124 (2018) /www.naturalspublishing.com/Journals.asp 121

Table 7: March precipitation in Minneapolis/St Paul

0.77 1.74 0.81 1.20 1.95 1.20 0.47 1.43 3.37 2.20

3.00 3.09 1.51 2.10 0.52 1.62 1.31 0.32 0.59 0.81

2.81 1.87 1.18 1.35 4.75 2.48 0.96 1.89 0.90 2.05

Table 8: Maximum likelihood estimates of parameters and standard errors for precipitation data

Model λ̂ α̂ θ̂ ĉ d̂

NEGMIR 0.225 3.022 2.246 0.112 24.039

(0.102) (0.515) (0.281) (0.052) (12.399)

EGMIR 1.658 2.918 0.235 1.877

(0.138) (0.355) (0.051) (0.146)

NEGIR 0.087 1.305 0.219 10.813

(0.018) (0.181) (0.028) (1.555)

NEGIE 8.228 9.708 0.258 0.092

(4.261) (2.387) (0.086) (0.022)

α̂ β̂ θ̂ η̂
NGIW 2.202 3.292 4.635×10−5 5.822

(0.448) (1.087) (0.002) (0.014)

7.2 Precipitation Data

The data was first reported by Hinkley [6] and consists of
30 observations of March precipitation (in inches) in
Minneapolis/ St Paul. The data set is given in Table7.
The maximum likelihood estimates for the parameters of
the fitted distributions and their corresponding standard
errors in brackets are shown in Table8. The NEGMIR
distribution had all its parameters to be significant at the
5% significance level exceptd which was significant at
10%.The parameters of the EGMIR, NEGIR and NEGIE
distributions were all significant. The parameters of the
NGIW distribution were also significant, exceptθ .
Table9 revealed that the NEGMIR distribution provides a
better fit to the precipitation data compared to its
sub-models and the NGIW distribution since it has the
highest log-likelihood, smallest K-S, W∗, AIC, AICc and
BIC values.
The LRT was performed to compare the NEGMIR
distribution with its sub-models. The results as shown in
Table 10 revealed the NEGMIR distribution provides a
better fit to the precipitation data than its sub-models.
The estimated asymptotic variance-covariance matrix of
the NEGMIR distribution for the precipitation data is
given by

J−1 =











0.010 0.003 −1.033 0.017 0.004
0.003 0.003 −0.307 −0.001 −0.003
−1.033 −0.307 153.725 0.287 0.099
0.017 −0.001 0.287 0.265 0.046
0.004 −0.003 0.099 0.046 0.079











.

Table 9: Log-likelihood, goodness-of-fit statistics and
information criteria for precipitation data

Model ℓ AIC AICc BIC K-S W∗

NEGMIR -37.870 85.738 89.390 92.744 0.076 0.014

EGMIR -42.750 93.492 96.101 99.097 0.208 0.138

NEGIR -40.210 88.421 91.030 94.025 0.282 0.071

NEGIE -40.460 88.912 91.521 94.517 0.140 0.070

NGIW -39.66 87.326 89.935 92.931 0.125 0.066

Table 10: Likelihood ratio test statistic for precipitatio n data

Model Hypotheses LRT P-values

EGMIR H0 : λ = 1 vsH1 : H0 is false 9.754 0.002

NEGIR H0 : α = 0 vsH1 : H0 is false 4.682 0.030

NEGIE H0 : θ = 0 vsH1 : H0 is false 5.174 0.023

The approximate 95% confidence interval for the
parametersλ , α, θ , c andd are[0.025, 0.424],
[2.012, 4.032], [1.696, 2.797], [0.011, 0.214] and
[−0.262, 48.340] respectively. Figure4 displays the
empirical density and the fitted densities of the
distributions.
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Fig. 4: Empirical and fitted densities plot for precipitation data

8 Conclusion

This study proposes a five-parameter distribution called
NEGMIR distribution, which is an extension of the MIR
distribution and contains several sub-models suitable for
for modeling data from different fields of study. Various
statistical properties of the new distribution such as the
quantile function, moment, moment generating function,
Rényi entropy, reliability measure and order statistics
were studied. The parameters of the model were
estimated using the method of maximum likelihood
estimation and simulation studies performed to examine
the estimators of the parameters. The usefulness of the
new model was demonstrated using two real data sets.
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Appendix

The elements of the 5×5 unit observed information matrix
are given by:

∂ 2ℓ

∂λ 2 =− n
λ 2 ,

∂ 2ℓ

∂λ ∂c
=−

n

∑
i=1

(1− z̄d
i )

c log(1− z̄d
i )

1− (1− z̄d
i )

c
,

∂ 2ℓ

∂λ ∂d
=

n

∑
i=1

cz̄d
i (1− z̄d

i )
c−1 log(z̄i)

1− (1− z̄d
i )

c
,

∂ 2ℓ

∂λ ∂α
=

n

∑
i=1

cdziz̄
d−1
i (1− z̄d)c−1

xi
[

1− (1− z̄d
i )

c
] ,

∂ 2ℓ

∂λ ∂θ
=

n

∑
i=1

cdzi z̄
d−1
i (1− z̄d)c−1

x2
i

[

1− (1− z̄d
i )

c
] ,

∂ 2ℓ

∂ c2 =− n
c2 − (λ −1)

n

∑
i=1

(1− z̄d
i )

2c log(1− z̄d
i )

2

[

1− (1− z̄d
i )

c
]2

− (λ −1)
n

∑
i=1

(1− z̄d
i )

c log(1− z̄d
i )

2

1− (1− z̄d
i )

c
,

∂ 2ℓ

∂ c∂ d
=−

n

∑
i=1

z̄d
i log(z̄i)

1− z̄d
i

+(λ −1)
n
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z̄d
i (1− z̄d
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n
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cz̄d
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