MACHAKOS UNIVERSITY
 University Examinations 2021/2022 Academic Year
 SCHOOL OF PURE AND APPLIED SCIENCES
 DEPARTMENT OF MATHEMATICS AND STATISTICS
 THIRD YEAR FIRST SEMESTER EXAMINATION FOR
 BACHELOR OF SCIENCE (MATHEMATICS)
 SMA 304: NUMBER THEORY

DATE: 29/8/2022
TIME: 8.30-10.30 AM

INSTRUCTION:

Answer Question One and Any Other Two Questions

QUESTION ONE - (30 MARKS)
a) Using appropriate examples, distinguish between the meaning of the term congruence modulo m and the term reduced residue modulo m.
b) Let x, y and z be integers. Show that if $x \mid y$ and $y \mid z$ then $x \mid z$.
c) Let $a \in \mathbb{Z}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be a sequence of integers such that $a \mid b_{i}$ for each $i=1,2, \ldots, n$. Prove that

$$
a \mid\left(b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{n} y_{n}\right)
$$

for any $y_{1}, y_{2}, \ldots, y_{n} \in \mathbb{Z}$.
d) Prove that if q is an odd integer then $q^{2}=8 k+1$ for some $k \in \mathbb{Z}$.
e) Express the following pairs of integers in the form $a=b q+r$ with $0 \leq r<b$

$$
\begin{array}{ll}
\text { i. } & a=-3561, b=98 \\
\text { ii. } & a=337, b=751 .
\end{array}
$$

QUESTION TWO (20 MARKS)

a) Let $i \in \mathbb{Z}$. Prove that either $i^{2}=4 j$ or $i^{2}=4 j+1$ for some integer j.
(4 marks)
b) Explain the meaning of the Euler ϕ-function of a positive integer n hence or otherwise determine $\phi(15)$.
c) Using the Euclidean algorithm, express $\operatorname{gcd}(2327,819)$ in the form $d=2327 x+819 y$.
(6 marks)
d) Suppose that $a, b, n \in \mathbb{Z}$ with $n>0$. Given that if $a \equiv b(\bmod n)$, Prove that $a^{m} \equiv$ $b^{m}(\bmod n)$ for any positive integer m.
(5 marks)

QUESTION THREE (20 MARKS)

a) Let a, b, m be integers with $m>0$ and suppose that $a \equiv b(\bmod m)$. Prove that $a x \equiv$ $b x(\bmod m x)$ for any integer x.
b) Prove that if y is an integer then $3 \mid\left(y^{3}-y\right)$.
c) Solve the linear congruence $133 x-6 \equiv 32(\bmod 209)$
d) Construct at least two distinct complete residue systems modulo 8. For each of the given complete residue systems, determine their corresponding reduced residue systems modulo 8.

QUESTION FOUR (20 MARKS)

a) Suppose that a, b are non-zero integers such that $a=b q+r$ for some integers q, r. Prove that if $d=\operatorname{gcd}(b, r)$ then $d \mid a$.
(7 marks)
b) Suppose that $a \in \mathbb{Z}$ is a positive integer greater than 1 . Prove that the number $\frac{a^{3}+5 a}{3}$ is an integer.
(6 marks)
c) Suppose that a, b are non-zero integers. Prove that $\operatorname{gcd}(6 a-9 b, 9 a-13 b) \mid b$. Hence or otherwise show that $\operatorname{gcd}(6 a-9,9 a-13)=1$ for any integer a.
(7 marks)

QUESTION FIVE (20 MARKS)

a) Distinguish between linear and non-linear Diophantine equations.
b) Let a, b, c, d, m be non-zero integers with $m>0$. Suppose that $a \equiv b(\bmod m)$ and $c \equiv$ $d(\bmod m)$. Prove that

$$
\begin{array}{ll}
\text { i. } & a-c n \equiv b-d n(\bmod m) \text { for any integer } n, \\
\text { ii. } & a c-z \equiv b d-z(\bmod m) \text { for any integer } z .
\end{array}
$$

c) Solve the following linear Diophantine Equations
i. $\quad 111 x+321 y=690$
ii. $\quad 54 x+21 y=91$
d) Prove that if a is an integer neither divisible by 2 nor 3 then $a^{2} \equiv 1(\bmod 24) . \quad$ (6 marks)

