

QUESTION TWO (20 MARKS) Let $i \in \mathbb{Z}$. Prove that either $i^2 = 4j$ or $i^2 = 4j + 1$ for some integer *j*. (4 marks) a)

Explain the meaning of the *Euler* ϕ -function of a positive integer n hence or otherwise b) determine $\phi(15)$. (5 marks)

a = 337, b = 751.

Answer Question One and Any Other Two Questions

QUESTION ONE - (30 MARKS)

$$a \mid (b_1y_1 + b_2y_2 + \dots + b_ny_n)$$

- d) Prove th (5 marks)
- Express the following pairs of integers in the form a = bq + r with $0 \le r < b$ e)
 - a = -3561, b = 98,i. (5 marks)

hat if q is an odd integer then
$$q^2 = 8k + 1$$
 for some $k \in \mathbb{Z}$.

for any
$$y_1, y_2, \dots, y_n \in \mathbb{Z}$$
. (5 marks)

Using appropriate examples, distinguish between the meaning of the term *congruence*

modulo
$$m$$
 and the term *reduced residue modulo* m .
Let x, y and z be integers. Show that if $x \mid y$ and $y \mid z$ then $x \mid z$.

c) Let
$$a \in \mathbb{Z}$$
 and $b_1, b_2, ..., b_n$ be a sequence of integers such that $a \mid b_i$ for each $i = 1, 2, ..., n$.
Prove that

MACHAKOS UNIVERSITY

University Examinations 2021/2022 Academic Year

SCHOOL OF PURE AND APPLIED SCIENCES

DATE: 29

INSTRUCTION:

ii.

a)

IE: 8.30-10.30 AM

(5 marks)

(5 marks)

c) Using the Euclidean algorithm, express gcd(2327,819) in the form d = 2327x + 819y.

(6 marks)

d) Suppose that $a, b, n \in \mathbb{Z}$ with n > 0. Given that if $a \equiv b \pmod{n}$, Prove that $a^m \equiv b^m \pmod{n}$ for any positive integer m. (5 marks)

QUESTION THREE (20 MARKS)

- a) Let a, b, m be integers with m > 0 and suppose that $a \equiv b \pmod{m}$. Prove that $ax \equiv bx \pmod{mx}$ for any integer x. (4 marks)
- b) Prove that if y is an integer then $3 \mid (y^3 y)$. (5 marks)
- c) Solve the linear congruence $133x 6 \equiv 32 \pmod{209}$ (7 marks)
- d) Construct at least two distinct complete residue systems modulo 8. For each of the given complete residue systems, determine their corresponding reduced residue systems modulo 8.

(4 marks)

QUESTION FOUR (20 MARKS)

- a) Suppose that a, b are non-zero integers such that a = bq + r for some integers q, r. Prove that if d = gcd(b, r) then $d \mid a$. (7 marks)
- b) Suppose that $a \in \mathbb{Z}$ is a positive integer greater than 1. Prove that the number $\frac{a^3+5a}{3}$ is an integer. (6 marks)
- c) Suppose that a, b are non-zero integers. Prove that gcd(6a 9b, 9a 13b) | b. Hence or otherwise show that gcd(6a 9, 9a 13) = 1 for any integer a. (7 marks)

QUESTION FIVE (20 MARKS)

- a) Distinguish between *linear* and non-linear Diophantine equations. (2 marks)
- b) Let a, b, c, d, m be non-zero integers with m > 0. Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Prove that
 - i. $a cn \equiv b dn \pmod{m}$ for any integer n, (4 marks)
 - ii. $ac z \equiv bd z \pmod{m}$ for any integer z. (4 marks)

c) Solve the following linear Diophantine Equations (4 marks)

- i. 111x + 321y = 690
- ii. 54x + 21y = 91
- d) Prove that if *a* is an integer neither divisible by 2 nor 3 then $a^2 \equiv 1 \pmod{24}$. (6 marks)