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SCHOOL OF PURE AND APPLIED SCIENCES 

DEPARTMENT OF MATHEMATICS AND STATISTICS  

FOURTH YEAR FIRST SEMESTER EXAMINATION FOR  

BACHELOR OF SCIENCE (MATHEMATICS AND COMPUTER SCIENCE) 

BACHELOR OF SCIENCE (STATISTICS AND PROGRAMMING) 
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SMA 402: FIELD THEORY 

DATE: 29/8/2022                                              TIME: 2.00-4.00 PM 

INSTRUCTION:  

Answer Question One and Any Other Two  

 

QUESTION ONE - (30 MARKS) 

a) Let �,� be fields. Explain the meaning of the following terms: 

i. a field extension �/�,        (3 marks) 

ii. an algebraic element � ∈ � over �,       (4 marks) 

b) Using relevant examples distinguish between a field of positive characteristic � and a field 

of characteristic 0.          (5 marks) 

c) Consider the polynomials 	
��  2�� � 3�� � 2 and �
��  2�� � �� in ℤ����. 

i. Compute the sum 	
�� � �
��.       (3 marks) 

ii. Determine the degree of the product 	
���
��.     (4 marks) 

d) Describe the splitting field of the polynomial 	
��  �� � 1 over ℚ.  (6 marks) 

e) Prove that the number √3� � 1 is algebraic over ℚ.      (5 marks) 

 

QUESTION TWO (20 MARKS) 

a) Suppose that �/� is a field extension and � ∈ � is algebraic over �. Let 	 ∈ ���� be a non-

constant polynomial of the least degree such that 	
��  0. Prove that 

i. 	
�� is irreducible over �.       (5 marks) 

ii. if �
�� ∈ ���� is a polynomial such that �
��  0 then 	
��|�
��. (5 marks) 
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b) Let � be any field. Prove that for any � > 0 then �
��  � − 1 is a divisor of 	
��  � −

1 in the polynomial ring ����.        (5 marks) 

c) Let �  √2 � ! ∈ ℂ. Construct the minimal polynomial of � over ℚ hence or otherwise 

determine a basis for the field extension ℚ
��/ℚ.      (5 marks) 

 

QUESTION THREE (20 MARKS) 

a) Distinguish between an algebraically closed field � and an algebraic closure � of a field �. 

           (2 marks) 

b) Determine the root of 4� � 1 in ℤ����.       (2 marks) 

c) Let � ⊂ % ⊂ � be fields. Show that if � ∈ � is algebraic over % and %/� is a finite 

extension then � is algebraic over �.       (6 marks) 

d) Construct the minimal polynomial and the basis of the simple algebraic extension ℚ
√2& �

√2� over ℚ.                                                                 (10 marks) 

 

QUESTION FOUR (20 MARKS) 

a) Let 	
�� ∈ ���� be a non-constant polynomial. Explain the meaning of the splitting field of 

	
�� over �.          (4 marks) 

b) Let � be any field. Prove that any polynomial 	
�� ∈ ���� of degree 2 or 3 is irreducible if 

and only if 	
�� has no roots in �.        (4 marks) 

c) Describe the field extension ℚ
'��/ℚ where � ∈ ℚ is square free.   (6 marks) 

d) Suppose that (/� is an extension satisfying �(: ��  � where � is a prime number. Prove 

that (/� contains no proper intermediate field.      (6 marks) 

 

QUESTION FIVE (20 MARKS) 

a) Let �/� be a field extension. Show that ��: ��  1 if and only if �  �.   (5 marks) 

b) Suppose that �*, �+, … , �  and are subfields of a field �.     (5 marks) 

i. Prove that �* ∩ �+ ∩ …∩ �  is a subfield of �. 

ii. Describe the meaning of a prime subfield of a field �. 

c) Suppose that �/% and %/� are field extensions such that ��: %�  � and �%: ��  .. Prove 

that �/� is an extension such that ��: ��  �..                                                (10 marks) 


