

FOURTH YEAR FIRST SEMESTER EXAMINATION FOR

BACHELOR OF SCIENCE (MATHEMATICS AND COMPUTER SCIENCE)

BACHELOR OF SCIENCE (STATISTICS AND PROGRAMMING)

BACHELOR OF SCIENCE (MATHEMATICS)

SMA 402: FIELD THEORY

DATE: 29/8/2022	TIME: 2.00-4.00 PM
INSTRUCTION:	
Answer Question One and Any Other Two	

QUESTION ONE - (30 MARKS)

a)	Let F , K be fields. Explain the meaning of the following terms:		
	i.	a field extension F/K,	(3 marks)
	ii.	an algebraic element $\alpha \in F$ over K ,	(4 marks)
b)	Using relevant examples distinguish between a field of positive characteristic p and a field		
	of cha	aracteristic 0.	(5 marks)
c)	Consider the polynomials $f(x) = 2x^5 + 3x^4 + 2$ and $g(x) = 2x^9 + x^4$ in $\mathbb{Z}_4[x]$.		
	i.	Compute the sum $f(x) + g(x)$.	(3 marks)
	ii.	Determine the degree of the product $f(x)g(x)$.	(4 marks)
d)	Descr	ibe the splitting field of the polynomial $f(x) = x^4 + 1$ over \mathbb{Q} .	(6 marks)
e)	Prove	that the number $\sqrt[2]{3} + 1$ is algebraic over \mathbb{Q} .	(5 marks)
QUESTION TWO (20 MARKS)			
a)	Suppose that F/K is a field extension and $\alpha \in F$ is algebraic over K. Let $f \in K[x]$ be a non-		
	constant polynomial of the least degree such that $f(\alpha) = 0$. Prove that		
	i.	f(x) is irreducible over K.	(5 marks)
	::	if $n(u) \in V[u]$ is a natural such that $n(u) = 0$ then $f(u) n(u)$	(5 montra)

ii. if $p(x) \in K[x]$ is a polynomial such that $p(\alpha) = 0$ then f(x)|p(x). (5 marks)

- b) Let *F* be any field. Prove that for any n > 0 then g(x) = x 1 is a divisor of $f(x) = x^n 1$ in the polynomial ring *F*[*x*]. (5 marks)
- c) Let $\alpha = \sqrt{2} + i \in \mathbb{C}$. Construct the minimal polynomial of α over \mathbb{Q} hence or otherwise determine a basis for the field extension $\mathbb{Q}(\alpha)/\mathbb{Q}$. (5 marks)

QUESTION THREE (20 MARKS)

- a) Distinguish between an *algebraically closed field* K and an *algebraic closure* \overline{K} of a field K.
 - (2 marks)
- b) Determine the root of 4x + 1 in $\mathbb{Z}_5[x]$. (2 marks)
- c) Let $K \subset L \subset F$ be fields. Show that if $\alpha \in F$ is algebraic over L and L/K is a finite extension then α is algebraic over K. (6 marks)
- d) Construct the minimal polynomial and the basis of the simple algebraic extension $\mathbb{Q}(\sqrt[3]{2} + \sqrt{2})$ over \mathbb{Q} . (10 marks)

QUESTION FOUR (20 MARKS)

- a) Let $f(x) \in K[x]$ be a non-constant polynomial. Explain the meaning of the *splitting field* of f(x) over K. (4 marks)
- b) Let *F* be any field. Prove that any polynomial $f(x) \in F[x]$ of degree 2 or 3 is irreducible if and only if f(x) has no roots in *F*. (4 marks)
- c) Describe the field extension $\mathbb{Q}(\sqrt{p})/\mathbb{Q}$ where $p \in \mathbb{Q}$ is square free. (6 marks)
- d) Suppose that E/F is an extension satisfying [E:F] = p where p is a prime number. Prove that E/F contains no proper intermediate field. (6 marks)

QUESTION FIVE (20 MARKS)

- a) Let F/K be a field extension. Show that [F:K] = 1 if and only if F = K. (5 marks)
- b) Suppose that $K_1, K_2, ..., K_n$ and are subfields of a field K. (5 marks)
 - i. Prove that $K_1 \cap K_2 \cap ... \cap K_n$ is a subfield of *K*.
 - ii. Describe the meaning of a *prime* subfield of a field *K*.
- c) Suppose that F/L and L/K are field extensions such that [F:L] = n and [L:K] = m. Prove that F/K is an extension such that [F:K] = nm. (10 marks)