

SMA 404: COMPLEX ANALYSIS II

TIME: 2.00-4.00 PM

INSTRUCTION:

Answer Question One and Any Other Two Questions

QUESTION ONE (30 MARKS)

a)	State without proof the Cauchy's integral theorem.	(2 marks)
/	1 2 0	× /

b) Determine the poles of the function $f(z) = \frac{z+2i}{z^2(z^2+4)}$ stating clearly the order of each pole.

(4 marks)

(5 marks)

c) Use the Cauchy's residue theorem to evaluate the following integral

$$\oint_C \frac{2z-i}{z^2(z-2)} dz$$

where *C* is the circle |z| = 3.

d) Consider the transformation defined by $w = z^2 + 1$. Compute:

- i. the coefficient of magnification at $z_0 = 1 + 3i$, (4 marks)
- ii. the angle of rotation at $z_0 = 1 + 3i$, (4 marks)
- iii. the critical points of the transformation. (2 marks)

e) Consider the function $u(x, y) = y^3 + ax^2y$

- i. Determine the constant *a* such that u(x, y) is a harmonic function. (3 marks)
- ii. Use the *harmonic conjugate theorem* to determine the harmonic conjugate of the u(x, y). (6 marks)

QUESTION TWO (20 MARKS)

- a) Using examples, distinguish between a *Conformal transformation*, and an *Isogonal transformation*. (4 marks)
- b) Determine whether the function $f(z) = (z + i)^2$ satisfy the Schwarz reflection principle.

(6 marks)

- c) Compute the residues of the function $f(z) = \frac{1}{z^2(z+1)}$ at all of its poles. (4 marks)
- d) Compute the Cauchy's principal value of the following indefinite integral

$$\int_{\infty}^{\infty} \frac{x^2}{(x^2+4)^2} dx.$$
(6 marks)

QUESTION THREE (20 MARKS)

- a) Explain the meaning of the term *analytic continuation*. (2 marks)
- b) Compute the Taylor Series for the function

$$f(z) = \cos(z)$$

about the point $a = \frac{\pi}{4}$. (4 marks)

c) Evaluate the integral
$$\int_0^{2\pi} \frac{d\theta}{5+4\sin\theta}$$
. (4 marks)

d) Prove that the series
$$g(z) = \frac{1}{1+i} \sum_{n=0}^{\infty} \left(\frac{z+i}{1+i}\right)^n$$
 is an analytic continuation of the function $f(z) = \left(\frac{1}{1-z}\right) = \sum_{n=0}^{\infty} z^n$ and sketch the region where the two functions are analytic.

e) State without proof the Schwarz reflection principle. (3 marks)

QUESTION FOUR (20 MARKS)

- a) Explain the meaning of the following terms:
 - i. *harmonic function* h(x, y), (2 marks)
 - ii. *harmonic conjugate* of a function h(x, y). (2 marks)
- b) Evaluate the contour integral $\oint_C \frac{(z-1)}{z(z+1)(4z-15)} dz$ where *C* is given to be the circle |z| = 2.

(5 marks)

(7 marks)

c) Determine the Laurent series for the function

$$f(z) = \frac{1}{1+z}$$

which are valid where $1 < |z| < \infty$.

d) Prove that for closed polygons, the sum of the exponents

$$\frac{\alpha_1}{\pi} - 1, \frac{\alpha_2}{\pi} - 1, \cdots \frac{\alpha_n}{\pi} - 1$$

in the Schwarz-Christoffel transformation is -2. (6 marks)

QUESTION FIVE (20 MARKS)

- a) Let $z_0 = r_0 e^{i\theta_0}$ be a fixed point on \mathbb{C} and n > 0 be an integer. Consider the transformation $w = z^n$.
 - i. Show that the angle of rotation at z_0 is $(n-1)\theta_0$. (2 marks)
 - ii. Compute the coefficient of magnification at z_0 . (2 marks)
- b) Consider the transformation given by $w = z^2$.

i. Determine the image of the triangular region on the z-plane bounded by the lines x = 0, y = 0 and x + y = 1. (5 marks)

- ii. Verify conformality at the point z = 1 by considering the intersection of the lines y = 0 and x + y = 1. (4 marks)
- c) State without proof the *Schwarz-Christoffel transformation* theorem. (3 marks)
- d) If $w = \infty$ is mapped onto a vertex z_n on the z-plane, prove that the term containing $(w u_n)$ in the Schwarz-Christoffel transformation can be replaced by 1. (4 marks)

(5 marks)