MACHAKOS UNIVERSITY

University Examinations 2021/2022 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
FOURTH YEAR FIRST SEMESTER EXAMINATION FOR
BACHELOR OF SCIENCE (ELECTRICAL AND ELECTRONICS ENGINEERING) EEE 402: COMPLEX ANALYSIS FOR ENGINEERING

DATE: 25/8/2022
TIME: 8.30-10.30 AM

INSTRUCTION:

- Answer Question ONE and any other TWO questions.
- Mobile phones and any written material are prohibited in the examination room.
- No writing should be done on this question paper. Any rough work should be done at the back of the answer booklet and canceled.
- All answer booklets should be handed in at the end of the exam whether used or not.
- Programmable calculators are prohibited

QUESTION ONE (COMPULSORY, 30 MARKS)

a)

Define the limit of a complex function $f(z)$ and hence evaluate $\lim _{z \rightarrow 2} f(z)=z^{2}+2 z$
b) Evaluate the points of discontinuity of $f(z)=\frac{z^{2}+1}{z^{4}-16}$
c) Evaluate $\oint_{c} \frac{z+4}{z^{2}+2 z+5} d z c:|z+1|=3$, using Cauchy's theorem.
d) A point $3+b i$ on a z-plane is mapped onto the point $(11, c)$ on the w-plane by the mapping function $f(z)=2 z^{2}+1$, find the values of b and c.
e) \quad Solve the equation $z^{4}-16=0$.
f) Find $|z|^{2}$ given that $z=\frac{2+i}{3-2 i}$
g) Show that $\cos z=\cos x \cosh y-i \sin x \sinh y$ hence deduce $\cos i y=\cosh y \quad$ (5 marks)

QUESTION TWO (20 MARKS)

a) Find all the values of z such that $e^{z}=1+i \sqrt{3}$
b) Determine the singular points of the following function and residues at each point $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$ and hence evaluate $\oint_{c} \frac{z^{2}}{(z-1)^{2}(z+2)} d z$ where $c:|z|=3$.
c) Show that $\cos ^{-1} z=-i \ln \left(z+\sqrt{z^{2}-1}\right)$. Hence find all solutions to the equation $\cos z=\sqrt{2}$

QUESTION THREE (20 MARKS)

a) Expand $f(z)=\frac{3}{z^{2}(z-3)^{2}}$ in a Laurent series at $z=3$.
b) State the condition for integrability of $f(z)$.
c) State and prove Cauchy's integral formula and give the general expression for the $n^{\text {th }}$ derivative of $f(z)$.
d) Integrate z^{2} along the straight line $O M$ (direct) and along an indirect path consisting of two straight line segments $O L$ and $O M$, where O is the origin, M is the point $z=3+i$ and $L(3,0)$. Show that integral of z^{2} along the two paths are equal. Hint: Sketch the region. marks)

QUESTION FOUR (20 MARKS)

a) Evaluate the points of discontinuity of
$f(z)=\frac{3 z^{4}-2 z^{3}+8 z^{2}-2 z=5}{z-i}$ marks)
b) Find the fifth root of the complex number $-4+4 i$ marks)
c) Evaluate the following integral $\int_{C} \frac{e^{i z}}{z^{2}(z-2)(z+5 i)} d z|z|=3$ using residue theorem.

QUESTION FIVE (20 MARKS)

a) Find the residue of $f(z) \frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$ at all its poles
b) Evaluate $\int_{1-i}^{2+i}(2 x+i y+1) d z$ along the curve $x=t+1, y=2 t^{2}-1$
c) Show that the function $u=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$ satisfies Laplace equation. Hence determine the analytic function $f(z)=u+i v$ where u is given above. (6 marks)

