

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

FOURTH YEAR FIRST SEMESTER EXAMINATION FOR

BACHELOR OF SCIENCE (ELECTRICAL AND ELECTRONICS ENGINEERING)

EEE 402: COMPLEX ANALYSIS FOR ENGINEERING

DATE: 25/8/2022

TIME: 8.30-10.30 AM

INSTRUCTION:

- Answer Question ONE and any other TWO questions.
- Mobile phones and any written material are prohibited in the examination room.
- No writing should be done on this question paper. Any rough work should be done at the back of the answer booklet and canceled.
- All answer booklets should be handed in at the end of the exam whether used or not.
- Programmable calculators are prohibited

QUESTION ONE (COMPULSORY, 30 MARKS)

a) Define the limit of a complex function f(z) and hence evaluate lim_{z→2} f(z) = z² + 2z (3 marks)
b) Evaluate the points of discontinuity of f(z) = z²⁺¹/z⁴⁻¹⁶ (3 marks)
c) Evaluate \$\ointyrightarrow c + 4/z^2 + 2z + 5/z^4 + 1| = 3\$, using Cauchy's theorem. (5 marks)
d) A point 3+bi on a z-plane is mapped onto the point (11,c) on the w-plane by the mapping

- function $f(z) = 2z^2 + 1$, find the values of b and c. (5 marks)
- e) Solve the equation $z^4 16 = 0.$ (5 marks)
- f) Find $|z|^2$ given that $z = \frac{2+i}{3-2i}$ (4 marks)
- g) Show that $\cos z = \cos x \cosh y i \sin x \sinh y$ hence deduce $\cos iy = \cosh y$ (5 marks)

QUESTION TWO (20 MARKS)

- a) Find all the values of z such that $e^z = 1 + i\sqrt{3}$ (5 marks)
- b) Determine the singular points of the following function and residues at each point

$$f(z) = \frac{z^2}{(z-1)^2(z+2)}$$
 and hence evaluate $\oint_c \frac{z^2}{(z-1)^2(z+2)} dz$ where $c: |z| = 3.$ (7 marks)

c) Show that $\cos^{-1}z = -iln(z + \sqrt{z^2 - 1})$. Hence find all solutions to the equation $\cos z = \sqrt{2}$ (8 marks)

QUESTION THREE (20 MARKS)

a) Expand
$$f(z) = \frac{3}{z^2(z-3)^2}$$
 in a Laurent series at $z = 3$. (5 marks)

- b) State the condition for integrability of f(z). (1 mark)
- c) State and prove Cauchy's integral formula and give the general expression for the n^{th} derivative of f(z). (7 marks)
- d) Integrate z^2 along the straight line OM (direct) and along an indirect path consisting of two straight line segments OL and OM, where O is the origin, M is the point z = 3 + i and L(3,0). Show that integral of z^2 along the two paths are equal. Hint: Sketch the region. (7 marks)

QUESTION FOUR (20 MARKS)

a) Evaluate the points of discontinuity of

$$f(z) = \frac{3z^4 - 2z^3 + 8z^2 - 2z = 5}{z - i} \tag{4}$$

marks)

- b) Find the fifth root of the complex number -4 + 4i marks)
- c) Evaluate the following integral $\int_{C} \frac{e^{iz}}{z^2(z-2)(z+5i)} dz |z| = 3$ using residue theorem.

(10 marks)

(6

QUESTION FIVE (20 MARKS)

a) Find the residue of $f(z) \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$ at all its poles (6 marks)

b) Evaluate
$$\int_{1-i}^{2+i} (2x+iy+1)dz$$
 along the curve $x = t+1$, $y = 2t^2 - 1$ (8 marks)

c) Show that the function $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$ satisfies Laplace equation. Hence determine the analytic function f(z) = u + iv where u is given above. (6 marks)