

DATE: 1/9/2022	
INSTRUCTION:	
Answer Question One and Any Other Two Questions	

QUESTION ONE (30 MARKS)

- a) Describe what is meant by the statement "The set ℝ of real numbers is complete".
 Exhibit an example to illustrate why the set ℚ of rational numbers is not complete.
 (3 marks)
- b) Explain the following terms
 - i. An upper bound,
 - ii. Infimum of a set
 - iii. Countable set.
- c) Determine whether the following sequence is monotonic and/or bounded. If bounded determine its supremum and infimum.
 - $\left\{\frac{2}{n^2}\right\}_{n=5}^{\infty}$ (5 marks)
- d) Show that if $p \in A$ and $p \notin A'$, then p is an isolated point (4 marks)
- e) Let A and B be neighborhoods of a point x. Show that the intersection $A \cap B$ is a neighborhood of x (3 marks)
- f) Prove that if a sequence converges then its limit is unique. (4 marks)
- g) Prove that a set X is closed iff its complement is open (5 marks)

(3 marks)

TIME: 2.00-4.00 PM

QUESTION TWO (20 MARKS)

a)	Prove that every convergence sequence is a Cauchy sequence.	(4 marks)		
b)	Prove that the set of rational numbers \mathbb{Q} has no interior point (4 marks)			
c)	Consider the set $A = (1,10) \cup \{11\}$. Show that 11 is the isolated point of A and both 1			
	and 10are the limit points of <i>A</i> (5			
	marks)			
d)	Let $X = \mathbb{R}$. Describe what is meant by			
	i. Neighborhood of a point $x \in X$.	(2 marks)		
	ii. An open set $O \in X$.	(2 marks)		
e)	Given that $A = (3,7)$ find the exterior and the boundary of A	(3 marks)		

QUESTION THREE (20 MARKS)

- a) Define what is meant by a convergent sequence hence show from first principles that the sequence: $y_n = 3 + \frac{(-1)^n}{n^2}$ converges to 3 in \mathbb{R} . (4 marks)
- b) Determine the nth partial sum of the series below. Hence test for its convergence.

$$\sum_{n=1}^{\infty} \frac{3}{n^2 + 3n + 2} \tag{5 marks}$$

c) Show that f(x) = 2x + 1 is Riemann integrable on [1,2] and hence find $\int_{1}^{2} (2x + 1) dx$,

d) Show that a finite intersection of open sets is open. (3 marks)

QUESTION FOUR (20 MARKS)

a)	Explain the following terms				
	i.	Monotonic increasing sequence.	(1 mark)		
	ii.	Cauchy sequence.	(2 marks)		
b)	Show	that the sequence $\left(\frac{1}{2^n}\right)$ in \mathbb{R} is a Cauchy sequence	(3 marks)		
c)	Use comparison test determine the convergence of				
	$\sum_{n=2}^{\infty}$	$\frac{n^2+2}{n^4+5}$	(3 marks)		
d)	Use r	atio test determine the convergence of			

Examination Irregularity is punishable by expulsion

(8 marks)

$$\sum_{n=2}^{\infty} \frac{(-10)^n}{4^{2n+1}(n+1)}$$
(5 marks)

e) For each positive integer k, let \mathbb{R}^k be the set of all k-tuples where $X = \{x_1, \dots, x_k\}$. Define a function d by $d(x, y) = \sum_{i=1}^k |x_i - y_i| \forall x, y \in \mathbb{R}$. Show that d is a metric space.

(6 marks)

QUESTION FIVE (20 MARKS)

- a) Prove that convergence of a sequence implies boundedness. Use an example to show that the converse need not be true. (5 marks)
- b) Determine the convergence or divergence of

$$\sum_{n=1}^{\infty} \frac{4\sqrt{n}-1}{n^2+2\sqrt{n}}$$
(5 marks)

c) Prove that a finite intersection of open sets is open (5 marks)

d) Prove that if
$$A, B \subset \mathbb{R}$$
, then $(A \cup B)' = A' \cup B'$ (5 marks)