

MACHAKOS UNIVERSITY

University Examinations 2021/2022 Academic Year SCHOOL OF PURE AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS AND STATISTICS FOURTH YEAR FIRST SEMESTER EXAMINATION FOR **BACHELOR OF SCIENCE (MATHEMATICS AND COMPUTER SCIENCE) BACHELOR OF EDUCATION (SPECIAL NEEDS EDUCATION) BACHELOR OF SCIENCE (MATHEMATICS) BACHELOR OF EDUCATION (SCIENCE) BACHELOR OF EDUCATION (ARTS) BACHELOR OF ARTS SMA 431: DIFFERENTIAL GEOMETRY**

DATE: 26/8/2022

INSTRUCTION:

TIME: 11.00-1.00 PM

Answer Question One and Any Other Two Questions

QUESTION ONE (30 MARKS)

a)	The volume of a parallelepiped is 4 unit. If its edges are;	
	$\vec{A} = 2\hat{i} - 3\hat{j} - 2\hat{k}; \vec{B} = 2\hat{i} + 3\hat{j} + 3\hat{k}; \vec{C} = 4\hat{i} - \beta\hat{j} + 2\beta\hat{k}.$	
	Determine the value of β	(4 marks)
b)	Given four vectors \vec{A} , \vec{B} , \vec{C} and \vec{D} . Show that	
	$\left(\vec{B}\times\vec{C}\right)\cdot\left(\vec{A}\times\vec{D}\right)+\left(\vec{C}\times\vec{A}\right)\cdot\left(\vec{B}\times\vec{D}\right)+\left(\vec{A}\times\vec{B}\right)\cdot\left(\vec{C}\times\vec{D}\right)=0$	(4 marks)
c)	Given that the vector $\vec{A} = (a, b, c)$ have direction cosines $\cos \alpha$, $\cos \beta$, $\cos \gamma$. Ex	valuate;
	$\cos^2\alpha + \cos^2\beta + \cos^2\gamma$	(4 marks)
d)	Consider the curve $x = 3t$, $y = 3t^2$, $z = 2t^3$ at the point $t = 1$. Determine;	
	i. The unit tangent vector to the curve \hat{T}	(4 marks)

- (4 marks)
 - The binormal vector to the curve \hat{B} ii.

e) Consider the surface described by the equation $R = e^t \cos t \hat{i} + e^t \sin t \hat{j} + e^t \hat{k}$ from $0 \le t \le \pi$. Determine the arc length of the surface in the given interval. (5 marks)

f) Determine the second fundamental form on the surface $R = u\hat{i} + v\hat{j} + (u^2 - v^2)\hat{k}$ (5 marks)

QUESTION TWO (20 MARKS)

a) Consider the line through the point (1, 2, -6) and parallel to the vector (4, 1, 3). Work out the;

	i.	Line's vector equation	(3 marks)
	ii.	Line's parametric equation	(4 marks)
	iii.	Line's rectangular equation	(4 marks)
b)	Consid	der the plane through the points A $(3, 2, -1)$, B $(1, -1, 3)$, C $(3, -2)$, 4). Calculate
	the pla	nne's equation	(9 marks)

QUESTION THREE (20 MARKS)

Given the space curve equation $R = 3\cos t \hat{i} + 3\sin t \hat{j} + 4t \hat{k}$. Determine;

a)	The principal normal vector \hat{N}	(5 marks)
b)	The curvature κ	(5 marks)
c)	The torsion τ	(5 marks)
d)	The radius of torsion σ	(5 marks)

QUESTION FOUR (20 MARKS)

Consider the surface described by the function $R = u\hat{i} + 2v\hat{j} + 2uv\hat{k}$. Determine the surface's;

a)	first fundamental magnitudes	(10 marks)

b) second fundamental magnitudes (10 marks)

QUESTION FIVE (20 MARKS)

Given the space curve $x = 2t^2\hat{i} + 3t\hat{j} + 3t^2\hat{k}$. If the curve passes (2, 3, 3). Calculate the curves;

a)	normal plane equation	(5 marks)
b)	osculating plane equation	(7 marks)
c)	rectifying plane equation	(8 marks)