

DATE: 26/8/2022

TIME: 2.00-4.00 PM

INSTRUCTION:

a)

b)

c)

Answer **ALL** Questions from **Section A** and any other **TWO** Questions in **Section B**. All questions in **Section B** carry equal marks. Start each Question on a **new** page.

SECTION A (30 Marks). Answer ALL questions.

QUESTION ONE (30 MARKS)

Defin	e the following terms as used in measure theory and probability	
i.	A closed Set	(1 mark)
ii.	σ - algebra	
iii.	Event	(1 mark)
iv.	Measure	(1 mark)
v.	Sample space	(1 mark)
vi.	Interval additive property	(1 mark)
State	the fundamental theorem of Lebesque measure on \mathbb{R}^n	(3 marks)
List a	ny two axioms of measure space	(2 marks)

- d) Show that If $A, B \in P$ then $\mu(B) = \mu(A \cap B) + \mu(B \setminus A)$ (2 marks)
- e) Describe briefly the fundamental theorems of integral functions in measure theory. (2 marks)
- f) Let X_1, X_2, X_3 ... be a sequence of independently identical distributed random variables (*i. i. i random variables*) each with the same distribution, each having common mean $\mu = (X)$ and variance $\delta^2 = Va(X)$. Show that $(X) = (X) \times E(N) = \mu E(N)$, where S =

 $\sum^{N} j=1 X_{j}$, and the number in the sum, N is also a random variable and is independent of the

$X_{j,S}.$			(4 marks)
g)	Give	any two application of measure	(2 marks)
h)	Desc	ribe any two types of measure with well-illustrated examples.	(4 marks)
i)	Diffe	prentiate between the following	
	i.	measurable sets and measurable functions	(2 marks)
	ii.	measurable space and measure space	(2 marks)
	iii.	probability space and probability measure	(2 marks)

SECTION B (40 Marks). Answer any TWO questions QUESTION TWO (20 MARKS)

a)	Define the conditional expectation of random variables	(3 marks)
b)	State any four properties of conditional expectation	(2 marks)
c)	State and proof the law of large numbers	(4 marks)
d)	Let X and Y be two independent random variables, show that $E(X/Y) = E(Y)$	(3 marks)

e) Let X, Y Z be jointly distributed with pdf,

$$f(xyz) = \begin{cases} \frac{1}{(2\pi)^{3/2}} e^{-\frac{1}{2}(X^2 Y^2 Z^2)} & -\infty < x, y, z < \infty \\ 0 \text{ else where} \end{cases}$$

Find $f(X/YZ), f(Y/XZ)$, and $f(Z/XY)$ (9

marks)

QUESTION THREE (20 Marks)

a)	What are Lebasque measurable sets	(2
	marks)	
b)	Describe any two examples of Lebasque measurable sets	(4 marks)
c)	State the central limit theorem and its importance in sampling distributions	(2 marks)
d)	State and prove the Fatou's Lemma	(5
	marks)	
e)	State and proof the law of large numbers	(7
	marks)	
QUES	STION FOUR (20 MARKS)	
a)	Define the characteristic function of a random variable	(1
	mark)	
b)	If X is normally distributed with mean μ and variance δ^2 ,	
	i. Obtain the characteristic function of X;	(8

marks)

ii.	Using the characteristic function, find the mean of X	
	marks)	
iii.	Hence find the variance of X	(4 marks)

QUESTION FIVE (20 MARKS)

a)	What is an integral function	(3 marks)
b)	state any five properties of inferable functions	(5 marks)
c)	describe the two modes of convergence theorems	(6 marks)
d)	Define μ – finite measure	(3 marks)
e)	Describe Lebasque measure	(3 marks)