MACHAKOS UNIVERSITY

University Examinations 2021/2022 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
FOURTH YEAR FIRST SEMESTER EXAMINATION FOR
BACHELOR OF SCIENCE (MATHEMATICS AND COMPUTER SCIENCE)
BACHELOR OF SCIENCE (MATHEMATICS)
BACHELOR OF EDUCATION
SMA 400: TOPOLOGY I
DATE: 31/8/2022
TIME: 2.00-4.00 PM

INSTRUCTION:

Answer Question One and Any Other Two Questions

QUESTION ONE (30 MARKS) COMPULSORY

a) Let $\tau=\{X, \emptyset,\{a\},\{a, b\},\{a, c, d\},\{a, b, c, d\},\{a, b, e\}\}$ be a topology on $X=\{a, b, c, d, e\}$. Determine the neighbourhood system of the point e and c
b) Let $X=\{a, b, c, d, e\}$ and $\rho=\{\varnothing, X,\{a\},\{b\},\{a, b\},\{c\},\{a b c\},\{a, c\},\{b, c\}\}$.

Let $E=\{a, b, c\}$, Determine:
i The closure of E
(4 marks)
ii The interior of E
c) Let $\tau_{1}=\{X, \emptyset,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e\}\}$ be a topology on $X=\{a, b, c, d, e\}$ and Let $A=\{a, b, c\} \subset X$, determine A^{\prime}, the derived set of A.
d) Let $X=\{1,2,3,4\}$ and $S=\{\{1\},\{2,3\},\{3,4\}\}$ be a collection of subsets of X. Give the topology generated by the set S.
e) Define the neighborhood of a point $p \in X$ where X is a topological space.
f) Determine the topology generated in R by the class of all closed sub-intervals of the type $(x, x+1)$
(4 marks)
g) Let X be a non-empty set. Define the following topologies
i. Trivial topology
ii. Discrete topology

QUESTION TWO (20 MARKS)

a) Consider the topology $\tau=\{X, \emptyset,\{1\},\{3,4\},\{1,3,4\},\{1,3,4,5\}\}$ on $X=\{1,2,3,4,5\}$ and the subset

$$
A=\{2,4,5\} \text { of } X \text {. Compute showing working out: }
$$

i.	$\operatorname{Int}(A)$	(3 marks)
ii.	$\operatorname{Ext}(A)$	$(3$ marks $)$
iii.	$B^{\prime} \operatorname{dary}(A)$	$(4$ marks $)$

b) Let (X, τ) be a topological space. Define a base and sub-base for the topology τ on X.
c) Let $X=\{1,2,3\}$ and $\tau=\{\{1,2\},\{2,3\}, \emptyset,\{2\},\{1,2,3\}\}$. Give the base and sub-base for the topology τ on X.
d) Given a subset A of a topological space, define what it means for p to be a limit point of A.
(2 marks)
e) Let X be a topological space and $A \subseteq X$. Give the definition of the closure of A. (2 marks)

QUESTION THREE (20 MARKS)

a) Determine the topology generated by the sub-basis $\beta=\{\{1\},\{1,3,4\},\{2,3\},\{3\}\}$, where $X=\{1,2,3,4\}$
(6 marks)
b) Given any collection of subsets of a nonvoid set X. Will this collection serve as a base for the topology?
(6 marks)
c) If N_{1} and N_{2} are two neighborhoods of x, show that $N_{1} \cap N_{2}$ is also a neighborhood of x .
(4 marks)
d) In a topological space X, a subset A of X is open if only if its complement is closed.
(4 marks)

QUESTION FOUR (20 MARKS)

a) Let $X=\{a, b, c, d, e\}$ and $J=\{\varnothing, x\{a\}\{b, c\}\{b, c, d\}\{a, b, c\}\{a, d\}\{d\}\{a, b, c, d\}\}$ let $Y=\{a, b, c, d\}$,
i. Determine the induced topology on Y
ii. Define relative topology
iii. Determine the closed set in relative topology
b) Define hereditary as used in topological spaces
c) $\quad T_{0 \text { and }} T_{1}$ spaces are hereditary prove
d) Let (X, ρ) be a topological space (X, ρ) is a T_{1} space iff each singleton subset $\{x\}$ is closed in (X, ρ)
e) Consider the discrete topology τ on $X=\{a, b, c, d\}$. Find a sub-base for τ which does not contain any singleton sets.

QUESTION FIVE (20 MARKS)

a) Let (X, ∂) be a metric space and $\mathrm{A} C X$. Then prove that if P is a limit point of A every neighborhood of P contains infinitely many points distinct from P .
b) Give the definition of a homeomorphism between two topological spaces X and Y.
(4 marks)
c) Let (X, ρ) and $\left(Y, \rho^{*}\right)$ be topological spaces and $f: X \rightarrow Y$ be a function if $p \in X$ and
$\{p\} \in \rho$ Show that f is continuous.

