

DATE: 31/8/2022

TIME: 2.00-4.00 PM

INSTRUCTION: Answer Question One and Any Other Two Questions

QUESTION ONE (30 MARKS) COMPULSORY

a)	Let $\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}\}$ be a topology on $X = \{a, b, c, d, e\}$.	
	Determine the neighbourhood system of the point e and c	(4 marks)
b)	Let $X = \{a, b, c, d, e\}$ and $\rho = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{c\}, \{abc\}, \{a, c\}, \{b, c\}\}.$	
	Let $E = \{a, b, c\}$, Determine:	
	i The closure of E	(4 marks)
	ii The interior of E	(4 marks)
c)	Let $\tau_1 = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$ be a topology on $X = \{a, b, c, d, e\}$ and	
	Let $A = \{a, b, c\} \subset X$, determine A' , the derived set of A .	(5 marks)
d)	Let $X = \{1,2,3,4\}$ and $S = \{\{1\},\{2,3\},\{3,4\}\}$ be a collection of subsets of X	K. Give the
	topology generated by the set S.	(5 marks)

e) Define the neighborhood of a point $p \in X$ where X is a topological space. (2 marks)

- f) Determine the topology generated in R by the class of all closed sub-intervals of the type (x, x + 1) (4 marks)
- g) Let *X* be a non-empty set. Define the following topologies
 - i. Trivial topology
 - ii. Discrete topology (2 marks)

QUESTION TWO (20 MARKS)

- a) Consider the topology τ = {X, Ø, {1}, {3,4}, {1,3,4}, {1,3,4,5}} on X = {1,2,3,4,5} and the subset
 A = {2,4,5} of X. Compute showing working out:
 i. Int(A) (3 marks)
 ii. Ext(A) (3 marks)
 iii. B' dary(A) (4 marks)
- b) Let (X, τ) be a topological space. Define a base and sub-base for the topology τ on X.

(2 marks)

- c) Let $X = \{1,2,3\}$ and $\tau = \{\{1,2\}, \{2,3\}, \emptyset, \{2\}, \{1,2,3\}\}$. Give the base and sub-base for the topology τ on X. (4 marks)
- d) Given a subset *A* of a topological space, define what it means for *p* to be a limit point of *A*. (2 marks)
- e) Let X be a topological space and $A \subseteq X$. Give the definition of the closure of A. (2 marks)

QUESTION THREE (20 MARKS)

- a) Determine the topology generated by the sub-basis $\beta = \{\{1\}, \{1, 3, 4\}, \{2, 3\}, \{3\}\}$, where $X = \{1, 2, 3, 4\}$ (6 marks)
- b) Given any collection of subsets of a nonvoid set X. Will this collection serve as a base for the topology? (6 marks)
- c) If N_1 and N_2 are two neighborhoods of x, show that $N_1 \cap N_2$ is also a neighborhood of x. (4 marks)
- d) In a topological space *X*, a subset *A* of *X* is open if only if its complement is closed.

(4 marks)

QUESTION FOUR (20 MARKS)

a) Let
$$X = \{a, b, c, d, e\}$$
 and $J = \{\emptyset, x\{a\}\{b, c\}\{b, c, d\}\{a, b, c\}\{a, d\}\{d\}\{a, b, c, d\}\}$ let $Y = \{a, b, c, d\},$

- i. Determine the induced topology on Y
- ii. Define relative topology
- iii. Determine the closed set in relative topology (6 marks)
- b) Define hereditary as used in topological spaces (2 marks)
- c) $T_{0 and} T_1$ spaces are hereditary prove (4 marks)
- d) Let (X, ρ) be a topological space (X, ρ) is a T_1 space iff each singleton subset $\{x\}$ is closed in (X, ρ) (4 marks)
- e) Consider the discrete topology τ on $X = \{a, b, c, d\}$. Find a sub-base for τ which does not contain any singleton sets. (4 marks)

QUESTION FIVE (20 MARKS)

- a) Let (X, ∂) be a metric space and A C X. Then prove that if P is a limit point of A every neighborhood of P contains infinitely many points distinct from P. (8 marks)
- b) Give the definition of a homeomorphism between two topological spaces X and Y.

(4 marks)

c) Let (X, ρ) and (Y, ρ^*) be topological spaces and $f: X \to Y$ be a function if $p \in X$ and $\{p\} \in \rho$ Show that f is continuous. (8 marks)