

DATE: 30/8/2022

TIME: 8.30-10.30 AM

INSTRUCTION:

Answer Question One and Any Other Two Questions

QUESTION ONE (30 MARKS) (COMPULSORY)

a)	Let $f(x) \in \mathbb{Q}[x]$. A primitive root of $f(x) = 0$ is $x = \sqrt{7} + \sqrt{11}$.			
	i.	Identify the splitting field of $f(x)$.	(2	
		marks)		
	ii.	Determine $f(x)$ as a minimal polynomial of this root.	(3	
		marks)		
	iii.	Identify the Galois group of $f(x)$.	(3	
		marks)		
	iv.	Let K be a field extension of a field H. Define the Galois group $G(K/H)$.	(3 marks)	
b)	Define what is meant by a solvable group G , hence show that the Symmetric group S_4 is			
	solva	solvable. (4		
	mark	marks)		
c)	Let E	Let <i>E</i> be a field of characteristic different from 2.		

- i. Show that if $f(x) = Ax^4 + Bx^2 + C$ where $A \neq 0$, then f(x) is solvable by radicals over *E*. (4 marks)
- ii. If A = 1, b = -16, C = 4 determine the Galois group of f(x) over E in (i). (4 marks)
- d) "There is no general formula for solving a fifth-degree polynomial equation". Discuss.

(7 marks)

QUESTION TWO (20 MARKS)

a) Briefly state the fundamental theorem of Galois theory. (3 marks)

b) Let
$$f(x) = x^4 - 4x^2 - 5$$
 over Q.

- i. Find the zeros of the polynomial f(x). (4 marks)
- ii. Find the splitting field K of the polynomial f(x) and state $[K:\mathbb{Q}]$. (3 marks)
- iii. Construct the Galois group $G(K/\mathbb{Q})$ (4 marks)
- c) By using (b) above construct lattice diagrams of the subgroups of Galois group and subfields of the splitting field.
 (4 marks)
- d) Identify with reasons a subgroup of the symmetric group S_4 isomorphic to $G(K/\mathbb{Q})$.

(2 marks)

QUESTION THREE (20 MARKS)

- a) Let $(\alpha_i, i \in \mathbb{N})$ be a collection of automorphism of a field *K*, show $K\{\alpha_i\} = \{a \in K : \alpha_i(a) = a \forall \alpha_i\}$ is a subfield of *K*. (4 marks)
- b) Let $H = \mathbb{Q}(\sqrt{3}, \sqrt{5}, \sqrt{7})$. Consider the Galois group $G(H/\mathbb{Q})$. The field H may be considered as a vector space. Identify the elements of the basis \mathscr{B} of this vector space and state its dimension. (5 marks)
- c) Let $\tau_3, \tau_5, \tau_7 \in G(H/\mathbb{Q})$ such that $\tau_3: \sqrt{3} \mapsto -\sqrt{3}, \tau_5: \sqrt{5} \mapsto -\sqrt{5}, \tau_7: \sqrt{7} \mapsto -\sqrt{7}$. Compute the following indicated elements of *H*.
 - i. $\tau_3 \tau_5^2 \tau_7 (\sqrt{21} + \sqrt{15})$ (3 marks)

ii.
$$\tau_7 \tau_5 \tau_3 \left(\frac{\sqrt{3} - \sqrt{5}}{\sqrt{7} - \sqrt{21}} \right)$$
 (3 marks)

d) Apart from τ_3 , τ_5 , τ_7 identify and describe the remaining elements of $G(H/\mathbb{Q})$. (5 marks)

QUESTION FOUR (20 MARKS)

a) Define what is meant by a primitive element of a Field extension *E* of *F*. Identify the primitive element of the extension $F = \mathbb{Q}(\sqrt{2}, i)$ of \mathbb{Q} . Determine the minimal monic polynomial associated with the primitive element you have identified.

(8 marks)

- b) Give definitions of the following terms:
 - i. Separable extension of a field F (2 marks)
 - ii. Normal extension of a field *F*. (2 marks)
- c) State the symmetric function theorem. (2 marks)
- d) Express the following symmetric functions using elementary symmetric functions in x_1, x_2, x_3 :
 - i. $x_1^2 + x_2^2 + x_3^2$ (3 marks) ii. $x_1^3 + x_2^3 + x_3^3$ (3 marks)

QUESTION FIVE (20 MARKS)

a) Prove that the set of all automorphism of a field *H* is a group under composition of functions.

(4 marks)

b) Let *K* be a field extension of *H* and h(x) be a polynomial in H[x]. Show that any automorphism in G(K/H) defines a permutation of the roots of h(x) that lie in *K*. (4 marks) c) Define what is meant by a cyclotomic extension for any field K. Hence or otherwise write down the splitting field of the polynomial $x^5 - 1 \in \mathbb{Q}[x]$ and its corresponding Galois Group.

(6 marks)

d) Use Cardan's Formula to solve the polynomial equation $x^3 + x^2 - 3x + 2 = 0.$ (6 marks)