

ECU 300: ENGINEERING MATHEMATICS IX

	DATE: 29/8/2022	TIME: 8.30-10.30 AM
	INSTRUCTION:	
	Answer Question One and Any Other Two Questions	
QU	UESTION ONE (30 MARKS)	
a)	Show that $\vec{a} \times \vec{b}$ is orthogonal to \vec{a} and \vec{b}	(5 marks)
b)	Prove that $Grad \ \vec{r} = \frac{\vec{r}}{r}$ where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and $r = (x^2 + y)\hat{\imath}$	$(2^{2} + z^{2})^{\frac{1}{2}}$ (5 marks)
c)	If $\vec{V} = v_1 \hat{\iota} + v_2 \hat{j} + v_3 \hat{k}$, show that $\nabla \cdot (\nabla \times \vec{V}) = 0$	(4 marks)
d)	Evaluate the scalar and vector projections of \vec{b} onto \vec{a} if $\vec{a} = (-2)$	(3, -6) and
	$\vec{b} = (5, -1, 4)$	(4 marks)
e)	Find the directional derivative of $\varphi = (x + 2y + z)^2 - (x - y - z)^2$	$(z)^2$ at the point (2,1,-1) in
	the direction of $\mathbf{A} = \mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.	(4 marks)
f)	Verify Divergence theorem for $\vec{F} = x^2 i + y^2 j + z^2 k$ taken on the	e unit cube
	$0 \le x, y, z \le 1$	(5 marks)
g)	Convert $\left(8, \frac{\pi}{4}, \frac{\pi}{6}\right)$ from spherical to Cartesian coordinates	(3 marks)

QUESTION TWO (20 MARKS)

a) Show that
$$\lim_{t \to 1} \vec{r}(t) = \frac{t^2 - t}{t - 1}\hat{i} + \sqrt{t + 8}\hat{j} + \frac{\sin \pi t}{\ln t}\hat{k}$$
 exists but $\vec{r}(t)$ is not continuous at $t = 1$
(5 marks)

b) Find
$$\frac{dz}{dt}$$
 if $z = ln(3x^2 + y^3)$, $x = e^{2t}$, $y = t^{\frac{1}{3}}$ (7 marks)

c) Find
$$\frac{\partial z}{\partial u}$$
, $\frac{\partial z}{\partial v}$ if $z = e^{xy}$, $x(u, v) = 3u \sin v$, $y(u, v) = 4v^2 u$ (8 marks)

QUESTION THREE (20 MARKS)

a) Find and classify the stationary points of $f(x, y) = x^2y + 3xy^2 - 3xy$ (10 marks)

b) Determine the volume of the solid that lies under the surface z = xy and above the triangle with vertices (1,1), (4,1) and (1,2). (10 marks)

QUESTION FOUR (20 MARKS)

- a) Determine whether the vector field $\vec{F}(x, y) = (3x^2y \cos x + 4, x^3 e^y)$ is conservative and if so find its scalar potential function (10 marks)
- b) Verify Green's theorem in the plane for $\oint_c (xy + y^2)dx + x^2 dy$ where c is the closed curve of the region bounded by y = x and $y = x^2$. (10 marks)

QUESTION FIVE (20 MARKS)

- a) Show that the scale factors in cylindrical coordinate system are given by $h_r = 1$, $h_{\theta} = r$ and $h_z = 1$. (6 marks)
- b) Represent $\vec{A} = zi 2xj + yk$ in cylindrical coordinates and determine A_r, A_{θ} and A_z .

(7 marks)

c) Evaluate $\iiint y dV$ over region *E* which is below the plane z = x + 2 and above the xy plane and between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. (7 marks)