MACHAKOS UNIVERSITY

University Examinations 2021/2022 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
FOURTH YEAR FIRST SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE (MATHEMATICS AND COMPUTER SCIENCE) SMA 434: GAS DYNAMICS

DATE: 2/9/2022
TIME: 8.30-10.30 AM

INSTRUCTION:

Answer Question One and Any Other Two Questions

QUESTION ONE (30 MARKS)
a) Describe how aerodynamics aids in the flying of airplanes
b) A calorically perfect ideal gas is undergoing an isentropic process. What two factors can you consider to justify that the gas is indeed undergoing the process. marks)
c) Compute the density of air at $8400 \mathrm{Nm}^{-2}, 560 \mathrm{~K}$.

Take the gas constant $R=53.3 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
d) Consider a column vector $h_{i}(i=1,2,3, \ldots, n)$ of n variables, considering two functions $f_{i}\left(h_{i}\right)$ and $g_{i}\left(h_{i}\right)$, where all variables are functions of x and t, Formulate the necessary system of partial differential equation for the system to be in conservative form. 3 marks
e) Consider a fluid flowing between a slot separated by two plates; the lower at $y=0$ is stationery and the upper at $y=h$ is moving with a velocity U. Given that the velocity is only in the x direction and only a function of y, the flow has no imposed pressure gradient or body force and the flow has no acceleration, assuming constant viscosity and using the linear momentum principle
i. Show that the flow is linear.
ii. Suppose that the viscosity of the fluid is $0.30 \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$. Compute the shear stress τ in the fluid if it is moving with a velocity, $\mathrm{U}=5 \mathrm{~ms}^{-1}$ and the clearance h between the plates is 2.5 cm .
f) Consider a gas flowing through a stream tube. Given that at one section of the tube, the flow has a pressure of $200 \mathrm{Nm}^{-2}$, a temperature of 300 K and is moving with a velocity of $250 \mathrm{~ms}^{-}$ ${ }^{1}$, Compute the temperature at another section of the tube where the pressure reduces to 40 Nm^{-2} and the speed increases to $1100 \mathrm{~ms}^{-1}$. Take the specific heat of the gas at constant pressure, $c_{p}=2295 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.
(4 marks)
g) Hydrogen gas has a static temperature of 298 K and stagnation temperature of 523 K . Calculate its Mach number and hence classify the disturbance as either subsonic or supersonic. Take the ratio of specific heats to be $\gamma=1.41$. marks)
h) Consider air at a temperature of 600 K flowing through a converging-diverging nozzle which has a cross sectional area of $1 \mathrm{~cm}^{2}$. Given that the initial mass flow rate is 0.04125 kgs^{-1}, the initial and exit pressures are 200 kPa and 191.5 kPa respectively. Compute;
i. Mass flow rate at the exit,
ii. Exit velocity.

Take $\gamma=1.4, R=287 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and $c_{p}=1004.5 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.

QUESTION TWO (20 MARKS)

a) Consider a flow between a slot separated by two plates; the lower at $y=0$ is stationery and the upper at $y=h$ is moving with a velocity U. Given that the velocity is only in the x direction and only a function of y, the flow is driven by a pressure difference in the x direction such that at $x=0, P=P_{o}$ and at $x=l, P=P_{1}$. If there is no body force, the flow has no acceleration, assuming constant viscosity and using the linear momentum principle, Compute the velocity profile parameterized by P_{o}, P, h, U and μ. (10 marks)
b) Considering an ideal gas where pressure P is a function of temperature, T and Volume, V given by $P(T, V)=\frac{R T}{V}$. Using the laws of thermodynamics, derive the relation for;
i. The total internal energy $e(T)=e_{o}+c_{v}\left(T-T_{o}\right)$
(4 marks)
ii. The gas constant $R=c_{p}-c_{v}$
c) Given that the speed of sound in a general material, $c(T, \rho)=\sqrt{\left(\frac{d p}{d \rho}\right)_{T}+\frac{T}{c_{v} \rho^{2}}\left[\left(\frac{d P}{d T}\right)_{\rho}\right]^{2}}$

Simplify this expression and prove that for an ideal gas, the speed is only a function of temperature and given by $c(T)=\sqrt{\gamma R T}$
(3 marks)

QUESTION THREE (20 MARKS)

a) Consider a calorically perfect ideal gas flowing through a duct of length 150 m having a uniform cross section of area $0.03 \mathrm{~m}^{2}$. Given that at one end of the duct, the gas has a pressure of 150 kPa , a temperature of 300 K and is flowing at a velocity of $12 \mathrm{~ms}^{-1}$. If the gas is isobarically heated with a constant heat flux along the entire surface of the duct such that at the other end it has a pressure of 150 kPa and a temperature of 500 K , Calculate;
i. The mass flow rate,
(4 marks)
ii. Velocity of the gas at the other end.

Take $\mathrm{R}=287 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
b) Consider an airplane flying through still air at a velocity of $200 \mathrm{~ms}^{-1}$. Assuming steady isentropic flow of a calorically perfect ideal gas, given that the ambient air has a temperature of 288 K and a pressure of 101.3 kPa , Compute;
i. The Mach number and hence classify the disturbance,
ii. Temperature, pressure and density at the nose of the airplane.

Take $\gamma=\frac{7}{5}$ and $R=287 \mathrm{Jkg}^{-1} K^{-1}$

QUESTION FOUR (20 MARKS)

Consider air flow through a normal shock wave. Given that the upstream conditions are $u_{1}=$ $600 \mathrm{~ms}^{-1}, T_{01}=500 \mathrm{~K}, P_{01}=700 \mathrm{kPa}$, using Rankine-Hugoniot relations Calculate the downstream conditions M_{2}, u_{2}, T_{2} and P_{02}.Take $\gamma=1.4, c_{p}=1000 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and $R=287 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$

QUESTION FIVE (20 MARKS)

a) Consider a gas flowing over a wedge inclined at an angle of 20° to the horizontal. For a calorically perfect ideal gas, if the upstream conditions are $P_{1}=100 \mathrm{kPa}, T_{1}=$ $300 K$ and $M_{1}=3$. Using Hodograph and characteristic relations, compute the downstream pressure and temperature for a shock angle of;
i. $\quad \beta=37.76^{0}$ relating to a weak oblique shock wave,
ii. $\quad \beta=82.15^{0}$ relating to a strong oblique shock wave,
iii. $\quad \beta=-9.91^{0}$ relating to a rarefaction shock.
b) Consider a calorically perfect ideal gas. Given that it has a temperature of 300 K and is moving with a velocity of $500 \mathrm{~ms}^{-1}$, compute the Prandtl-Mayer function $v(M)$.
Take $\gamma=1.4$ and $R=287 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$

