

MACHAKOS UNIVERSITY

University Examinations for 2021/2022 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF PHYSICAL SCIENCES
THIRD YEAR FIRST SEMESTER EXAMINATION FOR
BACHELOR OF EDUCATION (SPECIAL NEEDS EDUCATION)
BACHELOR OF SCIENCE IN ANALYTICAL CHEMISTRY)
BACHELOR OF EDUCATION (SCIENCE)

SCH 300: COMPARATIVE STUDY OF S AND P BLOCK ELEMENTS

DATE: 30/8/2022

TIME: 8.30-10.30 AM

INSTRUCTIONS:

• The paper consists of **two** sections.

- Section A is **compulsory** (30 marks).
- Answer any **two** questions from section **B** (each 20 marks).
- Periodic table attached in the last page.

SECTION A (COMPULSORY)

QUESTION ONE (30 MARKS)

- a) Giving an appropriate equation in each case, state two ways that small crystalline amount of boron can be obtained. (4 marks)
- b) Most Aluminium salts are acidic in solution. Starting with $[Al(H_2O)_6]^{3+}$ show how the ion forms an acidic solution. (3 marks)
- c) Explain why the solubility of alkaline earth metal, carbonates and sulphates in water decrease down the group. (2 marks)
- d) State five ways in which Lithium shows similarities to Magnesium in its chemical behaviour. (5 marks)
- e) When Potassium metal dissolves in liquid ammonia the solution can acquire different colours. Provide the colour and explain the reasons for this type of colour change. (3 marks)
- f) Sodium (Z=11), Aluminium (Z=13), Phosphorus (Z=15) and Chlorine (Z=17) are period three elements. Write the Electron configuration for (4 marks)

Na

 $A1^{3+}$

 \mathbf{P}^{3-}

Cl

- g) State and explain the trend in atomic radius of the elements in (f) above. (2 marks)
- h) Write a balanced chemical equation between:

(5 marks)

- i. KO_2 with H_2O
- ii. Mg with N_2
- iii. Na with liquid NH₃
- iv. NF_3 with H_2O
- v. SeCl₄ with AgF
- i) Alkali metals are prepared by electrolysis of their fused chlorides and not through electrolysis of their solutions. Explain this statement. (2 marks)

SECTION B (ANSWER ANY TWO QUESTIONS)

QUESTION TWO (20 MARKS)

- a) Explain the following statements:
 - i. A solution of Na₂CO₃ is alkaline.

(3 marks)

- ii. Alkali metals are prepared by electrolysis of their fused chlorides and not through reduction, displacement nor electrolysis of their solutions. (4 marks)
- iii. Biologically, sodium is found to be more useful than potassium.

(4 marks)

- b) State three applications of the following compounds:
 - i. Calcium Hydroxide, Slaked lime,Ca(OH)₂.

(3 marks)

ii. Cement (CaO.SiO₂, CaO.Al₂O₃)

(3 marks)

iii. Plaster of paris, CaSO₄.H₂O

(3 marks)

QUESTION THREE (20 MARKS)

- a) Chemistry of Beryllium, (Be) resembles that of Aluminum, (Al) and differs from other group II elements.
 - i. List two similarities between Be and other group II elements

(2 marks)

ii. State three differences between Be and other group II elements.

(2 marks)

iii. Illustrate with suitable examples, the resemblance in the chemistry of Be and Al.

(6 marks)

- b) Boron chloride, BCl₃ is said to be electron deficient.
 - i. Explain what electron deficient compounds are.

(2 marks)

ii. By using Lewis structures, draw the structure of AlCl₃ and SiCl₄ and indicate which of the two is an electron deficient compound. (8 marks)

QUESTION FOUR (20 MARKS)

- a) Explain the following trends:
 - There is a phenomenal decrease in ionisation enthalpy from carbon (Z=6) to silicon (Z=14).
 - ii. A mixture of dilute NaOH and aluminium pieces is used to open blocked waste water drain. (2 marks)

	iii.	Both Gallium (Ga) and Aluminium (Al) are group 13 elements with Ga having					
		s than Al.					
			(3 marks)				
	iv.	The increasing order of the thermal stability of alkaline earth metal car	bonates is				
		$MgCO_3 < CaCO_3 < SrCO_3 < BaCO_3$.	(2 marks)				
b)	By u	sing relevant chemical equations, classify the following oxides as neutral,	acidic, basic				
	or an	nphoteric.					
	i.	CO,	(1 mark)				
	ii.	B_2O_3 ,	(2 marks)				
	iii.	SiO_2 ,	(2 marks)				
	iv.	CO_2 ,	(2 marks)				
	v.	Al_2O_3	(3 marks)				
QUE	ESTION	N FIVE (20 MARKS)					
Q UE a)	Defin	ne the following terms:					
	i.	Van der waal bond	(2 marks)				
	ii.	Ionic radius	(2 marks)				
	iii.	Oxidation number	(2 marks)				
	iv.	Electron affinity	(2 marks)				
	v.	Electronegativity	(2 marks)				
b)	Desc	ribe the biological importance of any two alkaline earth metals.	(6 marks)				
c)	Nitrogen and Phosphorus bond with halogens forming different structures. Draw and name						
	the structure of NCl_3 and PCl_5 respectively. (4 marks)						

		(223)	នូបូន	37 Rb 85.468	39.098 K	11 Na 22.990	3 Li 6941	1 H 1.0079	_
# Actinide series	* Lanthanide series	(226)	2 2 2	38 S1 87.62	20 Ca 40.078	12 Mg 24,305	Be 9.0122	2	
suide		89-103 #	57-71	39 Y 39	21 Sc 44956	w		•	
89 Ac (227)	57 La 138,91	(261)	72 Hf	40 Zr 91.224	22 Ti 47.867	4			
90 Th 232.04	58 Ce 140.12	105 Db	73	92.906	23 V 50.942	O ₁			
91 Pa 231.04	59 Pr 140.91	(266) Sg (266)	74 W	42 Mo 95.94	24 Cr 51,996	6			
92 U 238.03	00 Nd 14424	107 Bh (264)	7 7 2	43 Tc (98)	25 Min 54.938	7			
93 (737)	61 Pm (145)	108 Hs (270)	8 8	8u 101.07	26 Fe 55.845	00			
⁽² 44)	62 Sm 150.36	109 Mt (268)	77	45 Rh 102.91	27 Co 58.933	9			
95 Am (243)	151.96 En 63	(281)	7 7 78	46 Pd 106.42	28 Ni 58.693	10			
(247)	64 Gd 157.25	(272)	79 Au	47 A& 107.87	29 Cu 63.546	11			
97 ESK (247)	158.93	112 Cub (285)	8 #8 8	48 Cd 112.41	30 Zn 65.409	12			
(152) 55	06 Dy 162.50	113 Uut (284)	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	49 In 11482	31 Ga 69.723	13 Al 26.982	5 B 10.811	ıs	
(252) E.S	67 Ho 164.93	114 Uuq (289)	3 5 %	50 Sn 118.71	32 G 72.64	14 Si 28.086	6 C 12.011	4	
100 Fin (257)	68 E1 167.26	115 Uup (288)	, 1	51 Sb 121.76	33 As 74.922	15 P 30.974	7 14.007	ᅜ	
101 Md	69 Tm 168.93	(291)	2° 5° €	52 Te 127.60	34 Se 78.96	16 S 32.065	8 O 15,999	16	
(259)	70 Yb 173.04	(343)	} ≵ %	53 I 126.90	35 Br 79.904	17 C1 35.453	9 F 18.998	17	
103 L1 (262)	71 Lu 17497	118 Uuo (294)	2 8	54 Xe 13129	36 Ka 83.798	18 A1 39.948	10 Ne 20.180	2 He 4,0026	18
$\overline{}$		-							