

MACHAKOS UNIVERSITY

University Examinations for 2021/2022 Academic Year SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES

FOURTH YEAR FIRST SEMESTER EXAMINATION FOR

BACHELOR OF SCIENCE IN APPLIED PHYSICS AND TECHNOLOGY

SPH 449: COMPUTATIONAL METHODS IN PHYSICS

DATE: 25/8/2022 TIME: 2.00-4.00 PM

INSTRUCTIONS:

- The paper consists of **two** sections.
- Section **A** is **compulsory** (30 marks).
- Answer any **two** questions from section **B** (each 20 marks)

SECTION A

OUESTION ONE (30 MARKS)

marks)

QUESTION ONE (50 MARKS)		
a)	Explain what numerical methods are and state why they are necessary.	(2 marks)
b)	ist three examples of numerical methods, other than Euler, Newton Raphson methods and	
	Gauss Seidel method.	(3 marks)
c)	Explain what is meant by the term numerical computation.	(3 marks)
d)	Describe three main steps, in a numerical computation process.	(3 marks)
e)	State any three Algorithmic programming languages.	(3 marks)
f)	Distinguish between Algorithmic languages and machine assembly language.	(2 marks)
g)	Write the steps followed when opening a workspace in code blocks c ++.	(3 marks)
h)	Write down the code for your first C++ program, that prints HELLO WORLD.	(3 marks)
i)	Vrite the syntax for the following:	
	i. For loop	
	ii. While loop	(2

j) Write a program that can be used to ask a user to input a pin 1234 in a teller machine.

(3 marks)

k) Write a C++ program that can be used to compute y = a + b - c for any numerical values assigned to a, b, and c (3 marks)

SECTION B

QUESTION TWO (20 MARKS)

- a) Describe Euler method using a diagram and show that $y_i = y_o + \frac{dy}{dx} \Delta x$ (abbreviations retain their usual meaning) (6 marks)
- b) Use Euler's method with a step size of 0.1 to approximate y(0.3) for initial value problem $\frac{dy}{dx} = 2x + 3y \text{ , y(0)} = 1$ (6 marks)
- Draw a flow diagram for the program that can be used to solve a problem using Euler method.
 (8 marks)

QUESTION THREE (20 MARKS)

- a) Using a paper and a pencil, use Euler method to find value of y at x = 0.6 for initial value problem $y = \frac{1}{8}(x^2 4x)$, y (2) = 0, $\Delta x = 0.2$ (8 marks)
- b) Write down the algorithm that can be used to execute the problem in 3 a) above (6 marks)
- c) Write a C++ program that can be used to solve an initial value problem using the Euler method.(6 marks)

QUESTION FOUR (20 MARKS)

- a) Define the Gauss Seidel method (2 marks)
- b) Using a paper and a pencil, solve the three linear equations below by Gauss Seidel method. Tabulate the result in a table.

$$4x+2y+2z=10$$
, $3x+5y+2z=15$, $2x+y+4z=8$ (12)

marks)

c) Write a C++ program that can be used to solve the problem in 4 b) above (6 marks)

QUESTION FIVE (20 MARKS)

a) Define the Newton Raphson method (2 marks)

b) Express
$$f(x) = 2x^2 + 8$$
 in the form $x_{i+1} = x_i - \frac{f(x_i)}{f(x_i)}$ (5 marks)

- Solve 5 b) using a paper and a pencil by Newton Raphson method and tabulate your result. Take initial estimate as x=2 (7 marks)
- d) Write a C++ program that can be used to solve the problem in 5 c) (6 marks)