

MACHAKOS UNIVERSITY

University Examinations for 2021/2022 Academic Year

DIRECTORATE OF TVET

FIRST YEAR SECOND TERM EXAMINATION FOR

DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION)

MATHEMATICS 11

DATE: 22/4/2022 TIME: 8.30-11.30 AM

INSTRUCTIONS

You should have the following for this examination:

Mathematical tables/ Non programmable scientific calculator

Answer any five questions in the answer booklet provided.

All questions carry equal marks.

1. a) Given the matrices;

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & -2 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 1 & -1 \\ 2 & 1 \\ 3 & 2 \end{bmatrix} \quad \text{and } C = \begin{bmatrix} 2 & 1 & 2 \\ 3 & -1 & -3 \\ -6 & -2 & -8 \end{bmatrix} \text{ determine;}$$

i. BA

ii.
$$N = BA + C$$

iii. N^{-1} (11 marks)

b) Three currents I_1 , I_2 and I_3 in an electric circuit satisfy the simultaneous equations;

$$I_1 + I_2 + I_3 = 12$$

 $2I_1 - 3I_2 + 2I_3 = 4$
 $-4I_1 + 2I_2 + I_3 = 1$

Use Cramer's rule to determine the values of the currents.

(9 marks)

- 2. a) Give the vectors $\vec{A} = 2i 3j + 4k$ and $\vec{B} = -3i + 2j 6k$, determine;
 - i. The angle between \vec{A} and \vec{B}
 - ii. A vector \vec{C} that is perpendicular to both \vec{A} and \vec{B} (9 marks)
 - b) An electric potential $V_{(x,y,z)} = 2x^2y + zy^2$ exists in a region of space. Determine at the point (1,1,-2)
 - i. Grad V
 - ii. Div(Grad V)
 - iii. The directional derivative of V in the direction of the vector $\vec{A} = 2i + 3j + k$ (11 marks)
- 3. a) A continuous random variable X has a probability density function defined by;

$$f(x) = \begin{cases} c(1-x)^2 & , 1 < x < 4 \\ 0 & , elsewhere \end{cases}$$
 find the;

- i. Value of the constant c
- ii. Mean

iii.
$$p(1.5 \le x \le 2.5)$$
 (8 marks)

- b) The lifespan of electric bulbs are normally distributed with a mean life of 2000 hrs. and a Standard deviation of 120 hrs. Determine the probability that the life span of a bulb will be;
 - i. Greater than 2150 hours
 - ii. Less than 1910 hours
 - iii. Between 1850 and 2090 hours (12 marks)
- 4. a) The relationship between the voltage V and the current I in an electric circuit is as shown in table 1

Ι	0	1	2	3	4	5
V	0.5	2.5	6.5	8.5	12.5	14.5

Determine the regression equation line of V and I

(10 marks)

b) Table 1 below shows the marks scored by students in a mathematics examination

Marks	12-14	15-17	18-20	21-23	24-26	27-29
No of students	2	6	a	8	4	1

Given that the mean is 19.9, determine the;

- i. value of a
- ii. standard deviation (10 marks)

5. a) Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ given that $z = \frac{x - y}{x^3 + y^2}$ (4 marks)

- b) Use partial differentiation to determine the equation of the tangent to the curve $z = x^2 + 3xy + y^2 2x 2y$ at the point (1,1) (7 marks)
- c) Locate the stationary points of the function $z = 2x^2 + 3y^2 xy 3x + 7y$ and determine their nature (9 marks)
- 6. a) A machine produces 11% defective resistors. Determine the probability that in a sample of 8 resistors chosen at random:
 - i. exactly 3 are defective
 - ii. atleast two are defective (5 marks)
 - b) Given the vectors $\vec{A} = i + 2j + 3k$, $\vec{B} = -i + 2j + k$ and $\vec{C} = 4i + 4j$ determine x such

that $\vec{A} + X\vec{B}$ is perpendicular to \vec{C} (5 marks)

- c) Given the matrices $A = \begin{bmatrix} 2 & 4 & -6 \\ 4 & 0 & 2 \\ 6 & 2 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -4 & 6 \\ 2 & -2 & 4 \\ 4 & 2 & 2 \end{bmatrix}$
 - i. Find 3A 4B

ii. Show that
$$(AB)^T = B^T A^T$$
 (10 marks)

- 7. a) Show that the general solution of the differential equation; $x^2 \frac{dx}{dy} = 2xy + y^2$ may be expressed in the form x(x+y) = cy where c is an arbitrary constant (9 marks)
 - b) Using the method of undetermined coefficients, solve the differential equation;

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dx} + 3y = t^3 + t^2 + 2$$
 (11 marks)