MACHAKOS UNIVERSITY

University Examinations for 2021/2022 Academic Year

 DIRECTORATE OF TVET FIRST YEAR SECOND TERM EXAMINATION FORDIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION)

MATHEMATICS 11
TIME: 8.30-11.30 AM

INSTRUCTIONS

You should have the following for this examination:
Mathematical tables/ Non programmable scientific calculator
Answer any five questions in the answer booklet provided.
All questions carry equal marks.

1. a) Given the matrices;

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
2 & 1 & 2 \\
1 & -2 & 3
\end{array}\right] \quad B=\left[\begin{array}{rr}
1 & -1 \\
2 & 1 \\
3 & 2
\end{array}\right] \text { and } C=\left[\begin{array}{ccc}
2 & 1 & 2 \\
3 & -1 & -3 \\
-6 & -2 & -8
\end{array}\right] \text { determine; } \\
& \text { i. } \quad B A \\
& \text { ii. } \quad N=B A+C \\
& \text { iii. } \quad N^{-1}
\end{aligned}
$$

b) Three currents I_{1}, I_{2} and I_{3} in an electric circuit satisfy the simultaneous equations;

$$
\begin{aligned}
& I_{1}+I_{2}+I_{3}=12 \\
& 2 I_{1}-3 I_{2}+2 I_{3}=4 \\
& -4 I_{1}+2 I_{2}+I_{3}=1
\end{aligned}
$$

Use Cramer's rule to determine the values of the currents.
2. a) Give the vectors $\vec{A}=2 i-3 j+4 k$ and $\vec{B}=-3 i+2 j-6 k$, determine;
i. The angle between \vec{A} and \vec{B}
ii. A vector \vec{C} that is perpendicular to both \vec{A} and \vec{B}
b) An electric potential $V_{(x, y, z)}=2 x^{2} y+z y^{2}$ exists in a region of space. Determine at the point (1,1,-2)
i. $\quad \operatorname{Grad} V$
ii. $\quad \operatorname{Div}(\operatorname{Grad} V)$
iii. The directional derivative of V in the direction of the vector $\vec{A}=2 i+3 j+k$
(11 marks)
3. a) A continuous random variable X has a probability density function defined by;

$$
f(x)=\left\{\begin{array}{ll}
c(1-x)^{2} & , 1<x<4 \\
0 & , \text { elsewhere }
\end{array}\right. \text { find the }
$$

i. Value of the constant c
ii. Mean
iii. $\quad p(1.5 \leq x \leq 2.5)$
b) The lifespan of electric bulbs are normally distributed with a mean life of 2000 hrs . and a Standard deviation of 120 hrs . Determine the probability that the life span of a bulb will be;
i. Greater than 2150 hours
ii. Less than 1910 hours
iii. Between 1850 and 2090 hours
4. a) The relationship between the voltage V and the current I in an electric circuit is as shown in table 1

I	0	1	2	3	4	5
V	0.5	2.5	6.5	8.5	12.5	14.5

b) Table 1 below shows the marks scored by students in a mathematics examination

Marks	$12-14$	$15-17$	$18-20$	$21-23$	$24-26$	$27-29$
No of students	2	6	a	8	4	1

Given that the mean is 19.9 , determine the;
i. value of a
ii. standard deviation
5. a) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ given that $z=\frac{x-y}{x^{3}+y^{2}}$
(4 marks)
b) Use partial differentiation to determine the equation of the tangent to the curve $z=x^{2}+3 x y+y^{2}-2 x-2 y$ at the point $(1,1)$
c) Locate the stationary points of the function $z=2 x^{2}+3 y^{2}-x y-3 x+7 y$ and determine their nature
6. a) A machine produces 11% defective resistors. Determine the probability that in a sample of 8 resistors chosen at random:
i. exactly 3 are defective
ii. atleast two are defective
b) Given the vectors $\vec{A}=i+2 j+3 k, \vec{B}=-i+2 j+k$ and $\vec{C}=4 i+4 j$ determine x such
that $\vec{A}+X \vec{B}$ is perpendicular to \vec{C}
(5 marks)
c) Given the matrices $A=\left[\begin{array}{rrr}2 & 4 & -6 \\ 4 & 0 & 2 \\ 6 & 2 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}4 & -4 & 6 \\ 2 & -2 & 4 \\ 4 & 2 & 2\end{array}\right]$
i. Find $3 A-4 B$
ii. Show that $(A B)^{T}=B^{T} A^{T}$
marks)
7. a) Show that the general solution of the differential equation; $x^{2} \frac{d x}{d y}=2 x y+y^{2}$ may be expressed in the form $x(x+y)=c y$ where c is an arbitrary constant
b) Using the method of undetermined coefficients, solve the differential equation;

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d x}+3 y=t^{3}+t^{2}+2 \tag{11marks}
\end{equation*}
$$

