

MACHAKOS UNIVERSITY

University Examinations for 2022/2023 Academic Year

SCHOOL OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

THIRD/FOURTH YEAR SEMESTER EXAMINATION FOR

BACHELOR OF SCIENCE (MECHANICAL ENGINEERING)

EMM 416: CONTROL ENGINEERING I

TIME:

INS:	TRUCTIONS This paper consists of Five Questions	
•	Question One is Compulsory	
•	• Attempt Any other Two Questions	
•	Make your answers Exact and concise	
QUE	ESTION ONE (COMPULSORY) (30MARKS)	
a)	Define Transfer Function of a Control System	(1 mark)
b)	Discuss the following Techniques of obtaining the Transfer Functions of closed	l loop systems
	i) Marson's Gain Formula (MSG)	(2 marks)

- ii) Use of Block Reduction Algebra (5 marks)
- c) For the control system defined by the equations given below,

DATE:

- $\begin{aligned} x_1 &= t_{01} x_0 \\ x_2 &= t_{12} x_1 + t_{32} x_3 + t_{42} x_4 \\ x_3 &= t_{03} x_0 + t_{13} x_1 + t_{23} x_2 \\ x_4 &= t_{04} x_0 + t_{34} x_3 + t_{54} x_5 \\ x_5 &= t_{15} x_1 + t_{45} x_4 + t_{65} x_6 \\ x_6 &= t_{06} x_0 + t_{76} x_7 + t_{56} x_5 \\ x_7 &= t_{67} x_6 + t_{77} x_7 \\ x_8 &= t_{78} x_7 \end{aligned}$
- i) Construct the Signal Flow Graph (2 marks)
- ii) Determine the Transfer Function (6 marks)
- d) For Figure Q 1d), compute the Transfer Function by Block Reduction (5 marks)

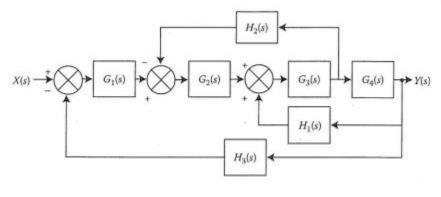
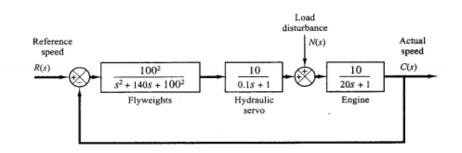


Figure Q 1d)

e) Figure Q 1e) is the block diagram of an engine-speed control system. The speed is measured by a set of fly weights. Derive and draw a *Signal Flow Graph* for the System (4marks)



f) Determine the restrictions on K for which the system represented by the SFG in Figure Q1f) is
 stable (5 marks)

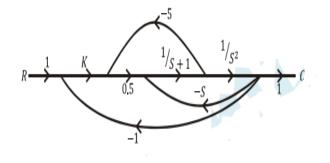


Figure Q1f)

QUESTION TWO (20 MARKS)

- a) Beginning from a diagram, derive the general expression of the Steady State Error for a closed loop system hence show that it depends on the type and magnitude of the input and the open loop transfer function.
 (5 marks)
- b) The various inputs to a Control System are given in Table 2. For Step, Ramp and Parabolic inputs of magnitude A, prove the parameters shown in Table Q 2 (6 marks)

Table	Q	2
-------	---	---

Error Constant ·	Equation	Steady-state error (en)
Position Error Constant (K _P)	$K_{P} = \lim_{s \to 0} G(s)H(s)$	$e_{ss} = \frac{A}{1 + K_p} \qquad .$
Velocity Error Constant (K _v)	$K_{\nu} = \lim_{s \to 0} sG(s)H(s)$	$e_{ss} = \frac{A}{K_{V}}$
Acceleration Error Constant (KA)	$K_A = \lim_{s \to 0} s^2 G(s) H(s)$	$e_{ss} = \frac{A}{K_A}$

No.	Function	Time-domain	Laplace domain
		$x(t){=}\mathcal{L}^1\{X(s)\}$	$X(s){=}\mathcal{L}\{x(t)\}$
1	Delay	δ(t-τ)	e ^{ds}
2	Unit impulse	δ(t)	1
3	Unit step	u(t)	$\frac{1}{s}$
4	Ramp	t	$\frac{1}{s^2}$
5	Exponential decay	e ^{-a}	$\frac{1}{s+\alpha}$
6	Exponential approach	$(1-e^{-\alpha r})$	$\frac{\alpha}{s(s+\alpha)}$
7	Sine	sin wt	$\frac{\omega}{s^2 + \omega^2}$
8	Cosine	cos est	$\frac{s}{s^2 + \omega^2}$
9	Hyperbolic sine	sinh at	$\frac{\alpha}{s^2 - \alpha^2}$
10	Hyperbolic cosine	cosh at	$\frac{s}{s^2-\alpha^2}$
11	Exponentially decaying sine wave	$e^{-\omega t}\sin\omega t$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
12	Exponentially decaying cosine wave	$e^{-\alpha t}\cos \omega t$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$

- c) Figure Q 2c) shows a resistance thermometer and valve connected together. The input is temperature and the output is the valve position. Determine
 - An expression of the unit step response when there are zero initial conditions. Apply Table
 2 (7 marks)
 - ii) Steady State Error for the System

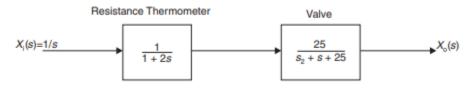


Figure Q 2c)

QUESTION THREE (20MARKS)

- a) Discuss the *Ruoth-Hurwitz Criteria for* system stability (4 marks)
- b) Investigate whether the Control System defined the Characteristic Equation given below is stable

(4 marks)

(2 marks)

$$S^7 + 9S^6 + 24S^5 + 24S^4 + 24S^3 + 24S^2 + 23S + 15 = 0$$

- - An open loop transfer function for a control system is given b)

Determine and draw the Root Locus for the feedback system

Determine and draw the root-locus of the feedback system whose open loop transfer function is c) given by (8 marks)

 $G(s)H(s) = \frac{K(s^2 + 10s + 100)}{s^4 + 20s^3 + 100s^2 + 500s + 1500}; H(s) = 1$

The open loop system transfer function of a unity feedback is given by the expression

$$G(s) = \frac{K}{(S+2)(S+4)(S^2+6S+25)}$$

Determine the value of K which will cause sustained oscillations in the closed loop system, hence the corresponding oscillation frequency (4 marks)

A feedback system has open-loop transfer function given by e)

$$G(s) = \frac{Ke^{-S}}{S(S^2 + 6S + 25)}$$

Determine the maximum value of 'K' for stability of the closed-loop system (4 marks)

QUESTION FOUR (20MARKS)

c)

d)

a) Determine and Draw the Root Locus of the feedback system whose open-loop transfer function is given by (6 marks)

$$G(s)H(s) = \frac{K}{s(s+2)(s+4)}, H(s) =$$

uster function for a control system is given by

$$G(s)H(s) = \frac{K}{s^2(s+1)}H(s) = 1$$

Examination Irregularity is punishable by expulsion

$$G(s) = \frac{K(S+2)}{S(S+2)(S^2+2S+5)}$$

The open loop system transfer function of a unity feedback is given by the expression

Determine the value of K for which the system is just stable

(6 marks)

(4 marks)

QUESTION FIVE (20MARKS)

An open-loop transfer function is defined by the relation

$$G(s)H(s) = \frac{K}{s(s+1)}$$

- a) For K = 1, draw the Bode Magnitude and Phase Plot and determine the gain margin, phase margin and absolute stability (8 marks)
 b) Draw the Polar Plot (4 marks)
- c) Using Nyquist Criteria, determine the stability of the system in feedback mode (6 marks)