

MACHAKOS UNIVERSITY

University Examinations for 2022/2023 Academic Year

SCHOOL OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

THIRD YEAR FIRST SEMESTER EXAMINATION FOR

BACHELOR OF SCIENCE (ELECTRICAL AND ELECTRONIC ENGINEERING)

EEE 308: ANALOGUE ELECTRONICS I

DATE:

TIME:

INSTRUCTIONS

Answer question **ONE** and **ANY OTHER TWO** questions

QUESTION ONE (COMPULSORY) (30 MARKS)

a) Calculate the dynamic forward and reverse resistance of a PN junction Germanium diode, given that the applied voltage is 0.25 V, $I_0 = 1 \mu A$ and $T = 300^{\circ} K$.

(6 marks)

b) Derive the relationship between base current amplification factor β and emitter current amplification factor α .

(6 marks)

c) The measured values of a diode at a junction temperature of 27°C are given by

$$V_{\rm D} = \begin{cases} 0.5 \, \text{V} & \text{at } I_{\rm D} = 5 \, \mu \text{A} \\ 0.6 \, \text{V} & \text{at } I_{\rm D} = 100 \, \mu \text{A} \end{cases}$$

Determine

- i. the emission coefficient η and
- ii. the leakage current I_S .

(6 marks)

d) A base reistor bias circuit in FigQ1 (d) is subjected to an increase in temperature from 25° C to 75° C. If $\beta = 100$ at 25° C and 150 at 75° C, determine the percentage change in Q-point values (V_{CE} and I_C) over this temperature range. Neglect any change in V_{BE} and the effects of any leakage current.

e) What is the r.m.s. output voltage of the unloaded amplifier in FigQ1 (e) given that $I_{DSS} = 8$ mA, $V_{GS(off)} = -10$ V and $I_D = 1.9$ mA?

(4 marks)

QUESTION TWO (20 MARKS)

- a) An NPN transistor with $\beta = 50$, is used in Common Emitter circuit with $V_{CC} = 10V$ and $R_C = 2 \ k\Omega$. The bias is obtained by connecting a 100 k Ω resistance from collector to base. Assume $V_{BE} = 0 \ V$. Find
 - i. The Quiescent Point;
 - ii. The Stability Factor.

(4 marks)

- b) One NPN transistor is used in the potential divider biasing arrangement. The circuit components values are Vcc = 4.5V, $R_C = 1.5 \text{ k}\Omega$, $R_E = 0.27 \text{ k}\Omega$, $R_2 = 2.7 \text{ k}\Omega$ and $R_1 = 27 \text{ k}\Omega$. If $\beta = 44$. Find the
 - i. Stability Factor;
 - ii. Quiescent point Q.

(4 marks)

c) Derive the expression for stability factor S for potential divider method of biasing.

(8 marks)

QUESTION THREE (20 MARKS)

- a) Given that $V_{CC} = +12 \text{ V}$, $R_B = 240 \text{ k}\Omega$ and $R_C = 2.2 \text{ k}\Omega$ determine the following for a common emitter transistor using fixed bias configuration
 - i. I_{BQ} and I_{CQ} ;
 - ii. V_{CEQ};
 - iii. V_B and V_C ;
 - iv. V_{BC} .

(6 marks)

- b) For the network of Fig.Q4 (b)
 - i. Determine I_{CQ} and V_{CEQ} ;

ii. Find V_B , V_C , V_E and V_{BC} .

(7 marks)

(7 marks)

c) Determine the dc bias voltage V_{CE} and the current I_C for CE amplifier using the voltagedivider configuration and having the following parameters: $V_{CC} = +22 \text{ V}$, $R_C = 10 \text{ k}\Omega$, $R_E = 1.5 \text{ k}\Omega$, $R_2 = 3.9 \text{ k}\Omega$ and $R_1 = 39 \text{ k}\Omega$ and $\beta = 140$.

QUESTION FOUR (20 MARKS)

- a) FigQ4 (a) shows a p-channel enhancement-mode MOSFET circuit. Calculate
 - i. the drain current I_{D} ;
 - ii. source-to-drain voltage $V_{SD.}$

Assume that $R_1 = R_2 = 50 \text{ k}\Omega$, $V_{DD} = 5V$, $R_D = 7.5 \text{ k}\Omega$, $V_{TP} = -0.8 \text{ v}$, and $K_p = 0.2 \text{mA}/\text{V}^2$.

FigQ4 (a)

(10 marks)

For the dc circuit in FigQ4 (b), assume that the MOSFET parameters are $V_{TN} = 2 V$, $\dot{k_n} =$ (b) 80 μ A/V², and W/L = 4. Choose R₁ and R₂ such that the current in the bias resistors is approximately one-tenth of I_D . Design the circuit such that $I_D = 0.5$ mA.

FigQ4 (b)

(10 marks)

QUESTION FIVE (20 MARKS)

- Determine the following for the network in Fig.Q5 (a) a) i.
 - I_{DQ} and V_{GSQ};
 - ii. V_D.

(8 marks)

b) The following readings were obtained experimentally from a JFET:

V _{GS}	0V	0 V	- 0.2 V
V _{DS}	7 V	15 V	15 V
ID	10 mA	10.25 mA	9.65 mA

Determine

i. A.C. drain resistance;

ii. Trans-conductance;

iii. Amplification factor.

(8 marks)

c) In an n-channel JFET biased by potential divider method, it is desired to set the operating point at $I_D = 2.5$ mA and $V_{DS} = 8$ V. If $V_{DD} = 30$ V, $R_1 = 1$ M Ω and $R_2 = 500$ k Ω , find the value of R_s . The parameters of JFET are $I_{DSS} = 10$ mA and $V_{GS(off)} = -5$ V.

(4 marks)