

MACHAKOS UNIVERSITY

University Examinations for 2022/2023

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING

THIRD YEAR FIRST SEMESTER EXAMINATIONS FOR

BACHELOR OF SCIENCE (ELECTRICAL AND ELECTRONICS ENGINEERING)

EMM 312: FLUID MECHANICS III

DATE:

TIME:

INSTRUCTIONS

This paper contains FIVE questions Question ONE is **compulsory** and carries 30 Marks. Questions TWO – FIVE carries 20 Marks each. Answer question **ONE** and any other **TWO** questions.

QUESTION ONE (COMPULSORY) (30 MARKS)

a) Define the following terms with specific reference to open channels.

i)	Specific energy	(1 mark)
ii)	Critical depth	(1 mark)
iii)	Shooting flow	(1 mark)
iv)	Tranquil flow	(1 mark)

b) i) Show that the critical depth (D_c) in an open rectangular channel is given by;

$$D_{c} = \frac{2}{3}H$$
 (6 marks)

Where H is the specific Energy

- ii) Show that in a rectangular open channel critical velocity is realised when the Froude's Number is equal to one. (3 marks)
- iii) Water flows through a rectangular open channel of breadth 2 m at a velocity of 1.65 m/sec and the specific energy 1.4 m, Calculate the discharge under these conditions.

(3 marks)

c) i) Show that the discharge through Q over a flat-topped broad crssted weir forming a spillway to a large reservoir is given by;

 $Q = C_d L \sqrt{2g} \left[H h^2 - h^3 \right]$

Where: C_d – coefficient of discharge

g – acceleration due to gravity

H-head upstream of the weir

- h depth of water over the weir (4 marks)
- ii) Show that for maximum discharge Q $_{\text{max}}$ is given by:

$$Q_{max} = 1.706 C_d L H^{3/2}$$
 (4 marks)

- iii) The maximum discarge over a broad crested weir 30 m long with rounded enytrance is 18.5 m³/sec. Calculatr the upstream head in metres if the coefficient of discarge C_d = 0.66, g = 9.81 m/s². (4 marks)
- d) Distinguish between the terms Normal Shock wave and Oblique Shock wave. (3 Marks)

QUESTION TWO (20 MARKS)

- a) Derive the Chezy formula for a rectanguar open channel with a gentle gradient. Work from first principles and explain the meaning of all symbols used. (8 marks)
- b)
- i) A water channel is V-shaped with each side making an angle of 45° to the vertical. The depth of water being conveyed is 0.25 m and the slope of the channel is 1 in 500. Calculate the discharge in m³/sec. (6 marks)
- ii) Assuming that the slope and Chezy constant remain the same and the discharge is doubled, determine the depth of water being conveyed. . (6 marks) Assume the Chezy constant C = 56.

QUESTION THREE (20 MARKS)

a) Show that when a compressible gas adiabatically flows from a large vessel which is at constant pressure through an orifice at its side such that maximum flow is realised;

$$V = \sqrt{\frac{\gamma P}{\rho}}$$
(12 marks)

Where; V – velocity of the gas immediately in front of the orifice

- $\gamma\,$ Adiabatic expansion constant
- P pressure immediately in front of the orifice
- ρ mass density

 b) Air from a large reservoir discharges into the atmosphere through a small orifice at its side. The pressure and the temperature of the air are 210 kN/m² absolute and 15^oC respectively. The diameter of the orifice is 27.5 mm. Calculate the mass of air discharged into the atmosphere in kg/sec.

Assume:
$$R = 287 \text{ J/KgK}$$

 $\gamma = 1.4$
Atmospheric pressure = 103.5 kN/m²
Cd of the orifice = 0.64 (8 marks)

QUESTION FOUR (20 MARKS)

a) Show that for in a frictionless adiabatic flow of a compressible fluid through a horizontal pipe, Bernoulli's equation is given by:

$$\left(\frac{\gamma}{\gamma-1}\right)\frac{P}{\rho} + \frac{V^2}{2} = constant$$
 (10 marks)

- Where; v velocity of the gas immediately in front of the orifice
 - $\gamma\,$ Adiabatic index of compression/expansion

P – pressure

- ρ mass density
- b) Calculate the mass flowrate of air through a horizontal venturi meter with an inlet diameter 120 mm and a thick diameter of 60 mm. The absolute pressure at inlet and throat are 420 kN/m² and 350 kN/m² respectively. The temperature at inlet is 20⁰C.

Assume:
$$R = 287 J/KgK$$

$$\gamma = 1.4 \tag{10 marks}$$

QUESTION FIVE (20 MARKS)

a)	What i	s a hydraulic jump?	(2 marks)
b)	Concis	sely describe how hydraulic jump occurs in an open channel.	(3 marks)
c)	Derive a formula for the height of a hydraulic jump. Work from first principles and		
	explain	n the meaning of all the symbols used.	(8 marks)
d)	A jump occurs in a channel of rectangular cross-section 5.5 m wide through which the		
	discharge is 22.4 m^3 /sec. The depth of water before the jump is 0.43 m.		
	Determine the;		
	i)	Depth after the jump has taken place	(1 mark)
	ii)	Specific energy of water after the jump	(3 marks)
	iii)	Loss of pressure due to the jump	(3 marks)