

MACHAKOS UNIVERSITY

University Examinations for 2022/2023

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING SECOND YEAR SEMESTER EXAMINATION FOR

BACHELOR OF SCIENCE (MECHANICAL ENGINEERING)

EMM 203: ENGINEERING THERMODYNAMICS 1

DATE:

TIME:

INSTRUCTIONS:

- 1. This paper contains FIVE questions.
- 2. Question ONE is compulsory and carries 30 marks.
- 3. Four remaining questions carry 20 marks each.
- 4. Attempt Question ONE and any other TWO.

QUESTION ONE (COMPULSORY) (30 MARKS)

- a) Differentiate between an isolated, a closed and an open thermodynamic system providing reallife examples for each case (3 marks)
- b) In the compression stroke of an internal combustion engine, the heat rejected to the cooling water is 45 kJ/kg and the work input is 90 kJ/kg. Calculate the change in specific internal energy of the working fluid stating whether it is a gain or a loss (2 marks)
- c) Air is expanded reversibly behind a piston according to a law pv = constant. If the final volume is twice the initial volume and the work done on the fluid during the expansion is $34.7 \times 10^3 Nm$, determine the initial pressure of the air if its final volume is $0.1 m^3$

(7 marks)

- d) Find the temperature, specific volume, internal energy and enthalpy of dry saturated steam at 9.8 *bar*. (8 marks)
- e) Show that the work done by a perfect gas undergoing a reversible adiabatic process is given by:

$$W = \frac{p_1 v_1 - p_2 v_2}{\gamma - 1}$$

(5 marks)

- f) Distinguish between the Clausius' and Kevin-Planck's statements of the Second Law of thermodynamics (2 marks)
- g) In a coal-fired steam power plant, the temperature of high-pressure steam is 540°C and the temperature of the cooling tower water is 20°C. Calculate the Carnot efficiency of the power plant.
 (3 marks)

QUESTION TWO (20 MARKS)

- (a) Steam at 7 *bar*, dryness fraction 0.9, expands reversibly at constant pressure until the temperature is $200^{\circ}C$. Calculate:
 - (i) Work done by the system (7 marks)
 - (ii) Heat supplied into the system (6 marks)
- (b) 0.9 kg of nitrogen gas (molar mass 28 kg/kmol) is compressed reversibly and isothermally from a pressure of 1.01 bar and temperature $20^{\circ}C$ to a pressure of 4.2 bar. Calculate:
 - (i) The work done by nitrogen (5 marks)
 - (ii) The heat flow during the process (2 marks)

QUESTION THREE (20 MARKS)

(a) A turbine operating under steady flow conditions receives steam at the following state: pressure 13.8 *bar*; specific volume, $0.143 m^3/kg$; specific internal energy, 2590 *kJ/kg*; velocity, 30 *m/s*. The state of the steam leaving the turbine is as follows: pressure, 0.35 *bar*; specific volume, 4.37 m^3/kg ; specific internal energy, 2360 *kJ/kg*; velocity, 90 m/s. Heat is rejected to the surroundings at the rate of 0.25 *kW* and the rate of steam flow through the turbine is 0.38 *kg/s*. Calculate the power developed by the turbine (10 marks)

- (b) A perfect gas has a molar mass of 26 kg/mol and a value of $\gamma = 1.26$. Calculate the heat rejected:
 - When a unit mass of the gas is contained in a rigid vessel at 3 bar and 315°C, and is then cooled until the pressure falls to 1.5 bar
 (5 marks)
 - (ii) When a unit mass flow rate of the gas enters a pipeline at $280^{\circ}C$, and flows steadily to the end of the pipeline where the temperature is $20^{\circ}C$. Neglect the changes in velocities of the gas in the pipeline. Take $R_o = 8314.15 Nm/mole.K$ (5 marks)

QUESTION FOUR (20 MARKS)

(a) $0.03 m^3$ of oxygen (molar mass 32 kg/kmol) contained in a cylinder behind a piston is initially at 1.05 *bar* and $15^{\circ}C$. The gas is compressed isothermally and reversibly until the pressure is 4.2 *bar*. Calculate:

(i)	Change of entropy	(7 marks)	
(ii)	Heat flow away from the system	(2 marks)	
(iii)	Work done by the system	(1 mark)	
(iv)	Sketch the process on a temperature-entropy (T-s) diagram	(1 mark)	
Steam at 100 bar and $375^{\circ}C$ expands isentropically in a cylinder behind a piston to a			

pressure of 10 *bar*. Calculate the work done per kilogram of steam (9 marks)

QUESTION FIVE (20 MARKS)

(b)

(a) Show that the specific heats of at constant volume c_v and constant pressure c_p can be related using the following equation:

$$c_v + R = c_p$$

(9 marks)

(b) A cyclic heat engine operates between a source temperature of $800^{\circ}C$ and a sink temperature of $30^{\circ}C$. If the work done is 1 kW, calculate the rate of heat rejection by the heat engine (6 marks)

(c) A domestic freezer maintains a temperature of $-15^{\circ}C$. The ambient air temperature is $30^{\circ}C$. If heat leaks into the freezer at the continuous rate of 1.75 kJ/s. What is the least power necessary to pump this heat out continuously? (5 marks)