

University Examinations for 2022/2023 Academic Year

SCHOOL OF PURE AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS AND STATISTICS THIRD YEAR FIRST SEMESTER EXAMINATION FOR

BACHELOR OF SCIENCE (MATHEMATICS & COMPUTER SCIENCE)

BACHELOR OF SCIENCE (MATHEMATICS)

SMA 302: GROUP THEORY

DATE:15/12/2022

TIME:8.30 – 10.30A.M

INSTRUCTIONS TO CANDIDATES

Answer questions ONE and <u>ANY TWO</u> Questions

QUESTION ONE (30 MARKS) COMPULSORY

a)	Let G be the group of all real 2 × 2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that $ad - bc \neq d$	$c \neq 0$ under	
	multiplication. Let $k = \{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} b \in \mathbb{R} \}$, show that $k < G$ (k is a subgroup	p of <i>G</i>)	
		(5 marks)	
b)	Construct the multiplication table for A_3 .	(5 marks)	
c)	Let $G = Z_4 = \{0,1,2,3\}$, the group of integers modulo 4 under addition. order of 0, 1, 2 and 3	Determine the (5 marks)	
d)	Prove that every cyclic group is abelian	(5 marks)	
e)	Let $G = \{\pm 1, \pm i, \pm j, \pm k\}$, the quarternion group. Determine all the left $\{1, -1\}$ in <i>G</i>	cosets of $H =$ (5 marks)	
f)	If $f: G \to G'$ is an isomorphism of G with G' and e is the identity of G then	\rightarrow G' is an isomorphism of G with G' and e is the identity of G then prove that	
	f(e) is the Identity in G'.	(5 marks)	

QUESTION TWO 20 MARKS

a)	State and proof Lagrange's theorem	(8 marks)	
b)	Define a group	(5 marks)	
c)	If A is a non empty set and S_A a collection permutations of A. Then prove the	t and S_A a collection permutations of A. Then prove that S_A is a	
	group under permutation multiplication.	(7 marks)	

QUESTION THREE 20 MARKS

- a) Prove that every group of prime order is cyclic (5 marks)
 b) Prove that the collection of all even permutations of a finite set of n elements form a subgroup of order n!/2 (5 marks)
 c) Prove that if G is a group and a ∈ G, then H = {aⁿ | n ∈ Z} is a subgroup of G and is the
- d) Find all the sylow 3-subgroups of S_4 and demonstrate that they are conjugate. (5 marks)

QUESTION FOUR 20 MARKS

smallest subgroup which contains a.

- a) Prove that every subgroup of an abelian group is a normal subgroup (5 marks)
- b) Prove that if G is a group with binary operation * then the right and the left cancellation holds in G. (5 marks)
- c) Define a function $f: G \to G^1$ by $f(x) = axa^{-1}$ show that f is isomorphism. (5 marks)
- d) Prove that the centre of a group is a normal subgroup of the group. (5 marks)

QUESTION FIVE 20 MARKS

- a) Let $G = S_3$ and consider the subgroup $H = \langle (13) \rangle = \{1, (13)\}$, determine all the conjugates of H (6 marks)
- b) Prove that in a group G with the operation * , there is only one identity and inverse.

(6 marks)

(5 marks)

- c) State whether the following permutation is odd or even
 - i) (13245)(679)(1011) (4 marks)
 - ii) (134)(587)(26) (4 marks)