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INSTRUCTIONS TO CANDIDATES

Answer guestions ONE and ANY TWO Questions

QUESTION ONE (30 MARKS) COMPULSORY

a) Let G be the group of all real 2 x 2 matrices (a b

) such that ad — bc # 0 under

c d
e 1 b ;
multiplication. Let k = {(0 1)| b e R}, show that k < G (k is a subgroup of G)
(5 marks)

b) Construct the multiplication table for A;. (5 marks)
C) Let G = Z, = {0,1,2,3}, the group of integers modulo 4 under addition. Determine the

order of 0,1, 2 and 3 (5 marks)
d) Prove that every cyclic group is abelian (5 marks)
e) Let G = {£1, +i, +j, £k}, the quarternion group. Determine all the left cosets of H =

{1,-1}inG (5 marks)
f) If f:G — G' is an isomorphism of G with G’ and e is the identity of G then prove that

f (e) is the Identity in G’. (5 marks)

QUESTION TWO 20 MARKS

a) State and proof Lagrange’s theorem (8 marks)

b) Define a group (5 marks)

C) If A is a non empty set and Saa collection permutations of A. Then prove that Sa is a
group under permutation multiplication. (7 marks)
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QUESTION THREE 20 MARKS

a) Prove that every group of prime order is cyclic (5 marks)
b) Prove that the collection of all even permutations of a finite set of n elements form a
subgroup of order "?' (5 marks)

c) Prove that if G isa group and a € G, then H = {a™|n € Z} is a subgroup of G and is the
smallest subgroup which contains a. (5 marks)

d) Find all the sylow 3-subgroups of S, and demonstrate that they are conjugate. (5 marks)

QUESTION FOUR 20 MARKS

a) Prove that every subgroup of an abelian group is a normal subgroup (5 marks)
b) Prove that if G is a group with binary operation * then the right and the left cancellation
holds in G. . (5 marks)

C) Define a function f: G —» G by f(x) = axa™?! show that f is isomorphism. (5 marks)

d) Prove that the centre of a group is a normal subgroup of the group. (5 marks)

QUESTION FIVE 20 MARKS

a) Let G = S5 and consider the subgroup H = ((13)) = {1, (13)}, determine all the
conjugates of H

(6 marks)
b) Prove that in a group G with the operation * , there is only one identity and inverse.
(6 marks)
c) State whether the following permutation is odd or even
i) (13245)(679)(1011) (4 marks)
i) (134)(587)(26) (4 marks)
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