

DATE:

TIME:

INSTRUCTION:

- 1. Answer question one and any other two questions
- 2. Write the name of the unit and registration number on each page of your answer sheet.

QUESTION ONE (COMPULSORY) (30 MARKS)

	i.	Sequential cover	(3 marks)
	ii.	Lebesgue outer measure	(3 marks)
	iii.	Lebesgue measurable subset E of \Re	(2 marks)
b)	b) Show that $\mu^*(\{x\}) = 0$ for each $x \in \Re$		

c) Show that for any Interval $\mu^*(I) = \lambda(I)$, where $\lambda(I)$ is the usual length of an interval in \Re

(4 marks)

- d) Show that if E is a countable subset of \Re then $\mu^*(E) = 0$ (4 marks)
- e) Using (d) above show that the empty set \emptyset is Lebesgue measurable. (4 marks)
- f) Give the definition of a measure space. Let $L(X, \mathfrak{x} V)$ be a measure space. $G, H \in \mathfrak{x}$ with $G \subseteq H$. Show that if $V(G) < \infty$ then $V(G) \le V(H)$. (6 marks)

QUESTION 2 (20 MARKS)

a) Let $A \in \sigma m$ with $\mu(A) < \infty$ Given that B is any subset of \Re such that $B \supset A$ show that $\mu^*(B-A) = \mu^*(B) - \mu(A)$ (5 marks)

- b) Let $A \in \sigma m$ and $B \subset \Re$ show that $\mu^*(A \cup B) + \mu^*(A \cap B) = \mu(A) + \mu^*(B)$ (7 marks)
- c) Show that if $A, B \in \sigma m$ then $A \cup B \in \sigma m$. (5 marks)
- d) Deduce from (c) above that $A \cap B \in \sigma m$. (3 marks)

QUESTION 3 (20 MARKS)

a) Let μ^* be the Lebesgue outer measure on \Re Prove the following:

i.
$$\mu^*(\emptyset) = 0$$
 (4 marks)

ii. For any A ∈ X the set function μ_o^{*}: X → R defined by
 μ_o^{*}(A) = μ^{*}(A ∩ C)
 where C is a fixed set in X, is also an outer measure in R. (4 marks)

b) i) Let E⊆ℜ with μ*(E) <∞. If there is a subset A of E such that A is Lebesgue measurable and μ(A) = μ*(E) show that E is also Lebesgue measurable. (3 marks)
ii) Let E be Lebesgue measurable with μ(E) = 0
If A⊆E show that A is Lebesgue measurable and μ(A) = 0 (3 marks)

c) Give the definition of a Lebesgue non-measurable subset of ℜ.
 Show that if A is a Lebesgue non-measurable subset of ℜ then there is a subset E of A with 0 < μ*(E) <∞.
 (6 marks)

QUESTION FOUR (20 MARKS)

a) Let f be a function on \Re defined by

$$f(x) = \begin{cases} \frac{1}{2} & , & x \le 1 \\ |x| & , & -1 < x < 1 \\ -1 & , & 1 \le x \end{cases}$$

Show that f is measurable.

(6 marks)

- b) Let (X, X) be a measurable space, f: X → ℜ be X measurable and θ: ℜ → ℜ be continuous function.
 Show that the composite function (θ ∘ f) defined by (θ ∘ f)(x) = θ(f(x)), ∀ x ∈ X is X measurable.
 (8 marks)
- c) Let χ_E be the characteristic function on the set *E*. Show that χ_E is measurable if and only if *E* is Lebesgue measurable. (6 marks)

QUESTION FIVE (20 MARKS)

- a) Give the definition of an abstract measure space. Identify an example (4 marks)
- b) Explain and give an example on what we mean by some property holding μ almost everywhere (μ .*a.e*) on any abstract measure space. (5 marks)
- c) i) Give the definition of an abstract Integral. (3 marks)
 - ii) Define $f:[0,7] \rightarrow \Re$ by

$$f(x) = \begin{cases} 1, \ 0 \le x < 2\\ 3, \ 2 \le x < 3\\ 5, \ 3 \le x < 5\\ 9, \ 5 \le x < 7 \end{cases}$$

Use the definition in c(i) above to show how you would construct the abstract integral hence or otherwise evaluate it. (8 marks)