

# SCHOOL OF PURE AND APPLIED SCIENCES

## DEPARTMENT OF PHYSICAL SCIENCES

# FIRST YEAR FIRST SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE (ELECTRICAL AND ELECTRICAL ENGINEERING) BACHELOR OF SCIENCE (MECHANICAL ENGINEERING) BACHELOR SCIENCE (CIVIL ENGINEERING) ECU 100/ECU 113: CHEMISTRY FOR ENGINEERS I DATE: TIME:

INSTRUCTIONS:

- The paper consists of **two** sections.
- Section **A** is **compulsory** (30 marks).
- Answer any **two** questions from section **B** (each 20 marks).

### **QUESTION ONE (COMPULSORY) (30 MARKS)**

| a) | Define   | Define the following terms and give specific example for each;      |              |  |
|----|----------|---------------------------------------------------------------------|--------------|--|
|    | i.       | Functional group                                                    | (2 marks)    |  |
|    | ii.      | Hydrocarbons                                                        | (2 marks)    |  |
| b) | How m    | any Neutrons are in iron as shown below?                            | (1 mark)     |  |
|    |          | <sup>56</sup> <sub>26</sub> Fe                                      |              |  |
| c) | Disting  | uish between Nuclear fission and Nuclear fusion                     | (2 marks)    |  |
| d) | Identif  | y the four lines in the Balmer series of hydrogen                   | (4 marks)    |  |
| e) | Other    | than Balmer series found in the visible region of electromagnetic   | radiation of |  |
|    | hydrog   | en, give other four series found in the other parts of the spectrum | (4 marks)    |  |
| f) | State th | he three gas laws                                                   | (6 marks)    |  |

g) Relate the tendency of atoms to gain or lose electrons to the types of bonds they form.

(3 marks)

h) What is the wavelength, in nanometres, of green light having a frequency of 6.67  $\times 10^{-14}$ s<sup>-1</sup>? (Given: C = 3.0 x 10<sup>8</sup> m/s) (6 marks)

## **QUESTION TWO (20 MARKS)**

a)

|                           | i.                                                                              | Ernest Rutherford                                   | (5 marks)  |  |
|---------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|------------|--|
|                           | ii.                                                                             | Niels Bohr                                          | (5 marks)  |  |
| b)                        | Calculate the number of moles, and number of atoms of H, S, and O in 5 moles of |                                                     |            |  |
|                           | $H_2SO_4$                                                                       | (Given Avogadros number as $6.022 \times 10^{23}$ ) | (10 marks) |  |
| QUESTION THREE (20 MARKS) |                                                                                 |                                                     |            |  |

Discuss the following historical atomic theories and models

| a) | Calculate the wavelengths of the radiations by a hydrogen atom when an electron                        |                          |  |
|----|--------------------------------------------------------------------------------------------------------|--------------------------|--|
|    | makes the following transition: $n_2 = 4$ to $n_1 = 2$                                                 | (6 marks)                |  |
| b) | Give the Schrödinger equation and explain what it represents                                           | (4 marks)                |  |
| c) | State the symbols and names of the four set of quantum numbers that<br>uniquely define atomic orbitals | are used to<br>(8 marks) |  |
| d) | Boron atom has a total of five electrons. Workout its electronic configuration                         |                          |  |

#### (2 marks)

## **QUESTION FOUR (20 MARKS)**

| a) | i. State the three types of nuclear radiations                       |            |  |
|----|----------------------------------------------------------------------|------------|--|
|    | ii. Describe the properties of the above nuclear radiations in Qn 4i | (12 marks) |  |
| b) | Illustrate the five d-orbitals in two dimensional drawings           | (5 marks)  |  |

#### **QUESTION FIVE (20 MARKS)**

a) Compare the atomic and ionic radius of each of the following;

|    | i.    | Calcium atom and calcium ion                                | (4 marks) |
|----|-------|-------------------------------------------------------------|-----------|
|    | ii.   | Chlorine atom and chloride ion                              | (4 marks) |
| b) | Elem  | Elements in the periodic table are classified into blocs    |           |
|    | i.    | Identify four blocks in the periodic table                  | (4 marks) |
|    | ii.   | Identify the criteria for naming these blocs                | (1 mark)  |
| c) | Ident | ify the functional group in the following organic molecules |           |



(7 marks)