

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES

SECOND YEAR FIRST SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE (ANALYTICAL CHEMISTRY)

SCH 204: CHEMICAL THERMODYNAMICS AND PHASE EQUILIBRIA

DATE:

TIME:

INSTRUCTIONS:

- The paper consists of **two** sections.
- Section **A** is **compulsory** (30 marks).
- Answer any **two** questions from section **B** (each 20 marks).

Required data

- Gas Constant, $R = 8.314 \text{ JK}^{-1} \text{mol}^{-1} = 0.08206 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}$
- $0 \,^{\circ}\mathrm{C} = 273 \,\mathrm{K}$
- 1 atm = 760 mmHg = 101325 Nm⁻²
- $C_v = \frac{3}{2}R$ for a monatomic gas

Section A – Compulsory QUESTION ONE (COMPULSORY) (30 MARKS)

a)	Distinguish between;	
	i) System and Surrounding	(2 marks)
	ii) Triple point and Eutectic point	(2 marks)
	iii) A phase and a component	(2 marks)
b)	i) Define adiabatic change	(2 marks)
	 ii) 6 moles of an ideal monatomic gas at 400 K are compressed adiabat quarter of the original volume. Calculate the temperature of the compression. 	•
c)	i) Define an isothermal change	(2 marks)
	ii) 0.2 moles of an ideal gas were expanded isothermally at 273 K from 8 da	m^3 to 10 dm ³ .
	Determine the energy (q) absorbed from the surroundings.	(3 marks)
d)	Use the following data to draw a phase diagram for a substance A and B system	tem:
	I)Melting point of B is 655 °C	
	II) Melting point of A is 500 °C	
	III) One Eutectic point at 180 °C with 25% A and another at 350 °C with	h 85 % of A.
	IV) A solid compound BA ₂ is formed which melts at 580 °C.	<i></i>
e)	i) State the Raoult's Law	(6 marks) (1 mark)

- ii) Calculate the vapour pressure of a solution containing 11.7 g benzene (MW = 78) and 4.6 g methylbenzene (MW = 92) at 50 °C, if the vapour pressure of the pure components at this temperature are 3.6×10^4 Nm⁻² and 1.12×10^4 Nm⁻², respectively. (3 marks)
- f) i) Define entropy of a system
 - ii) Provided the following entropies and enthalpies of combustion at 25 °C;

Substance	S (JK ⁻¹)	ΔH(kJ)
C(graphite)	5.9	-396
H _{2(g)}	131.0	-287
C ₂ H _{6(g)}	231.0	-1567

Determine whether the following reaction is thermodynamically possible.

$$2C_{(graphite)}\!\!+ 3H_{2(g)} \rightarrow C_2H_{6(g)}$$

(3 marks)

(1 mark)

SECTION B: ANSWER ANY TWO QUESTIONS

a)	i) De	rive the Gibb's - Helmholtz equation.		(5 marks)		
	ii) F	For the reversible reaction				
		$N_2 + 3H_2 \leftrightarrow 2NH_3$				
	At 773 K, the value of K_P , with partial pressures in atmospheres, is 1.44 x 10 ⁻⁵ at low					
	pressures where the gases behave ideally. Determine the corresponding value of K_C					
	v	vith concentrations in mole litre ⁻¹ .		(5 marks)		
b) Using a Heat versus Temperature diagram, explain how one mole of ice			one mole of ice chan	iges when		
`		is added to it.		(8 marks)		
c)	Brief	fly explain why Pb-Sn alloys are used as solders		(2 marks)		
QUE	QUESTION THREE (20 MARKS)					
a)	i)	State Hess's law of constant heat summation.		(2 marks)		
	ii)	Calculate the enthalpy of the reaction;				
		$C_2H_{4(g)} + H_{2(g)} \rightarrow C_2H_{6(g)}$ at 298 K from the following data:				
		(i) $C_2H_{4(g)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 2H_2O_{(g)}$ (ii) $C_2H_{6(g)} + 7/2O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(g)}$	$\Delta H = -1395 \text{ kJ}$ $\Delta H = -1550 \text{ kJ}$			
		(iii) $H_{2(g)} + 1/2O_{2(g)} \rightarrow H_2O(g)$	$\Delta H = -243 \text{ kJ}$	(4 marks)		
b) When one mole of liquid benzene was completely bur		it in oxygen to form	liquid water			
and CO ₂ gas, $\Delta H = -3250$ kJ at 298 K. Calculate the enthalpy of reaction		n at constant				
	volu	me at the same temperature.		(4 marks)		
c)	Wate	er exhibits three phases i.e., ice, liquid water and va	oour.			
	i) S	ketch a well labeled phase diagram of water		(8 marks)		
	ii) S	Show that the triple point of water is invariant		(2 marks)		
QUE	STION	N FOUR (20 MARKS)				
a)	i)	Define the third law of thermodynamics		(2 marks)		
	ii)	Calculate the entropy change for the reaction:				
		$2C_{(graphite)} + 2H_{2(g)} \rightarrow 2C_2H_{4(g)}$				

Given the following standard entropies at 25 °C in units J K⁻¹mole⁻¹;

C(graphite)	5.7
H _{2(g)}	131.2
$C_2H_{4(g)}$	221.0

(5 marks)

- b) The boiling point of water at a pressure of 50 atmospheres is 265 °C and at 1 atmosphere is 100 °C. Assuming the temperature of the sink is 40 °C, compare the theoretical efficiencies of a steam engine operating between the boiling point of water and that of the sink at: a) 1 atmosphere b) 50 atmospheres. (5 marks)
- c) i) Sketch a Cu-Ni binary phase diagram clearly showing all the phases (4 marks)
 - ii) Explain how the Lever Rule can be used to determine the amount of each phase of the Cu-Ni alloy mixture (4 marks)

QUESTION FIVE (20 MARKS)

a) i) Derive the Van't Hoff Equation (4 marks)
 ii) The equilibrium constant K_P for the reaction:

 $N_2 + 3H_2 \leftrightarrow 2NH_3$

is 1.64 x 10⁻⁴ at 673K and 1.44 x 10⁻⁵ at 773 K. Determine the mean enthalpy of formation, ΔH_V , for one mole of ammonia from its elements in this temperature range.

(3 marks)

b) Calculate the Gibb's Free Energy change (ΔG), at 25 °C for the reaction:

$$C_2H_5OH_{(l)} + O_{2(g)} \rightarrow CH_3COOH_{(l)} + H_2O_{(l)}$$

from the following data.

c)

i.	$H_{2(g)}+ {}^{1}\!\!/_{2} O_{2(g)} \mathop{\longrightarrow} H_{2}O_{(l)}$	$\Delta G = -238 kJ$				
ii.	$2C_{(graphite)} + 3H_2O_{(g)} + 1/2 O_{2(g)} \rightarrow C_2H_5OH_{(l)}$	$\Delta G = -176 kJ$				
iii.	$2C_{(graphite)} + 2H_2O_{(g)} + O_{2(g)} \rightarrow CH_3COOH_{(l)}$	$\Delta G = -394 kJ$				
			(3 marks)			
Sketcl	(5 marks)					
From the diagram;						

- i) Identify all the triple points and the melting point of each allotrope (2 marks)
- ii) Discuss the application of the phase rule in the Sulphur system (3 marks)