

University Examinations 2022/2023

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES THIRD YEAR FIRST SEMESTER EXAMINATIONS FOR BACHELOR OF EDUCATION (SCIENCE) BACHELOR OF SCIENCE IN ANALYTICAL CHEMISTRY) BACHELOR OF EDUCATION (SPECIAL NEEDS) SCH 300: COMPARATIVE STUDY OF S AND P BLOCK ELEMENTS

DATE: TIME:

INSTRUCTIONS:

- i) The paper consists of **TWO** sections, section **A** and section **B**.
- ii) Section **A** is **compulsory** (30 marks).
- iii) Answer any **two** questions from section **B** (each 20 marks).
- iv) There is a periodic table on the last page.

SECTION A (COMPULSORY)

QUESTION ONE (30 MARKS)

a) The grid below shows part of the periodic table. Use it to answer the questions that follow.

The letters do not represent actual symbols.

N				S	U	V
P	R			T		W
Q						

i) Elements P and Q are s-block elements. Explain.

(1 mark)

- ii) Which of the elements in the periodic table has the highest atomic radius? Explain (2 marks)
- iii) Identify the most reactive non-metal in the periodic table. Explain your answer (2 marks)
- v) Compare and explain the atomic radius of P and T. (2 marks)
- vi) The second ionization energy of R is higher than its first ionization energy. Explain. (2 marks)
- vii) Element N and R are diagonally related due to their similarities in atomic and ionic radii. State three similarities between N and R compounds. (3 marks)
- b) Most Aluminium salts are acidic in solution. Starting with $[Al(H_2O)_6]^{3+}$ show how the ion forms an acidic solution. (3 marks)
- c) Explain why the solubility of alkaline earth metal, hydroxides in water increase down the group. (2 marks)
- d) (i) Write the electron configuration of the following elements/ions (4 marks)
 - 1. Cu
 - 2. Xe
 - 3. P³⁻
 - 4. Ca^{2+}
 - (ii) Compare and contrast the radius of Ca atom and Ca²⁺ ion. (2 marks)

Write a balanced equation for the following reactions: (5 marks) e) (i) Mg_3N_2 with H_2O (ii) Li with N₂ (iii) Heating LiNO₃ (iv) NF₃ with H₂O (v) SeCl₄ with AgF f) Alkali metals are prepared by electrolysis of their fused chlorides and not through electrolysis of their solutions. Explain this statement. (2 marks) **SECTION B (ANSWER ANY TWO QUESTIONS) QUESTION TWO (20 MARKS)** a) Calculate the effective nuclear charge on (i) a 3d electron in 34Ge (2 marks) (ii) the outermost electron in 15P (2 marks) Briefly discuss any five (5) chemical properties of group alkali metals (10 marks) b) c) State any three uses of the following compounds (i) Calcium oxide / Quicklime (3 marks) (ii) Plaster of paris, CaSO₄.H₂O (3 marks) **QUESTION THREE (20 MARKS)** a) The chemistry of Beryllium resembles that of Aluminum and differs from the other group (10 marks) II elements. Illustrate this with suitable examples. b) Boron chloride, BCl₃ is electron deficient; (i) What are electron deficient compounds? (2 marks) (ii) By using Lewis structures draw the structure of AlCl₃ and SiCl₄ and indicate which of the two is an electron deficient compound. (8 marks) **QUESTION FOUR (20 MARKS)** Explain the following trends: a) (i) Alkaline earth metals are better electric and heat conductors than alkali metals along a given period. (2 marks)

(ii) A mixture of dilute KOH and aluminium pieces is used to open blocked drains.

	(iii) E	(iii) Both Gallium and Aluminium are group 13 elements with Ga having more occupied						
	;	shells than Al. However, Ga has a smaller atomic radius than Al.	(3 marks)					
	(iv) E	(iv) BeO is almost insoluble but BeSO ₄ in soluble in water.						
b)	By us	sing relevant chemical equations, classify the following oxides as neutr	al, acidic,					
	basic	or amphoteric.						
	(i)	$\mathrm{Al}_2\mathrm{O}_3$	(2 marks)					
	(ii)	NO_2 ,	(2 marks)					
	(iii)	NO	(1 mark)					
	(iv)	P_2O_5	(2 marks)					
	(v)	$\mathrm{Sb}_2\mathrm{O}_3$	(3 marks)					
QUE	ESTION	FIVE (20 MARKS)						
a)	Defin	ne the following terms:						
	(i)	Covalent radii	(1 mark)					
	(ii)	Ionic bond	(1 mark)					
	(iii)	Oxidation number	(1 mark)					
	(iv)	Ionization energy	(1 mark)					
	(v)	Isoelectronic species (ions/atoms)	(1 mark)					
	(vi)	Polarisation	(1 mark)					
b)	Expla	ain the following statements:						
	(i) X	(i) Xenon has a closed shell configuration but forms compounds with fluorine. (2 mark						
	(ii) T	(2 marks)						
	(iii)	(iii) Noble gases have zero electron affinity. (2 marks						
	(iv) Halogens are coloured and on moving from F2 gas to I2 solid, the colour of halogens							
	beco	(2 marks)						
	(v) C	Generally, halogens are non-metals. However, fluorine shows	non-metallic					
	chara	acteristics while Astatine shows some metallic properties as well.	(2 marks)					
c)	Alum	ninium (III) chloride forms a dimer structure with both covalent and da	tive bonds					
	amon	ig its atoms. Draw its octet structure and clearly label the bonds.	(4 marks)					

		(223)	18731 52 82	85.468	39.098 K	11 Na 22.990	3 Li 6941	1 H 1.0079
# Actinide series	* Lanthar series	(226)	56 Ba 137.33	38 87.62	20 Ca 40.078	12 Mg 24.305	9.0122	2
uide	* Lanthanide series	89-103 #	57-71 *	906 A	21 Sc 44956	w		
22 * 8	57 La 138.91	(261) (261)	72 H 178.49	40 Zr 91.224	22 Ti 47.867	4		
7 7 8	58 Ce 140.12	(362) 105	73 Ta 180.95	92.906 92.906	23 V 50.942	u,		
91 Pa	59 Pr 140.91	(266) Sg 106	74 W 183.84	42 Mio 95.94	24 Cr 51996	0.		
28.02 U 28.02	00 Nd 144.24	107 Eth (264)	75 Re 186.21	89 7 43	25 Min 54.938	7		
2 .7 2	91 (145)	108 Hs (270)	76 190.23	101.07	26 Fe 55.845			
244 244	62 Sm 150.36	109 Mt (268)	77 L 192.22	#5 RH 102.91	27 Co 58.933	9		
24 % 45 4 %	63 Eu 15196	(183) S	78 Pt 195.08	106.43	58.693	5		
2 C %	64 Gd 157.25	(272)	79 Au 196.97	47 A8 107.87	29 Cu 63.546	=		
2 ₽ 249	158.93 To 851	(285) 112	80 200.59	Cd 112.41	30 Zn 65,409	23		
ន្ទីបន	66 Dy 162.50	113 Uut (284)	81 71 20438	49 In 11482	31 Ga 69.723	13 Al 26.982	10.811 B	13
252 58 9	67 Ho 164.93	114 Ung (289)	207.2	50 Sn 118.71	32 Q- 72.64	14 Si 28.086	12.011	4
257 100	68 Ex 167.26	(883) dina 511	83 208.98	51 Sb 121.76	33 As 74922	15 P 30.974	14.007	ᅜ
101 101	69 Tm 168.93	(291) 116	Po (209)	52 Te 127.60	34 Se 78.96	16 S 32.065	15,999	12
25 3 10	70 Yb 173.04		(210) 28 88	53 I 126.90	35 Ba 79.904	35.453	18.998 F	17
2 1 2	71 Lu 17497	118 Uwo (294)	(222)	54 Xe 13129	36 83.798	18 A1 39.948	20.180	2 He 40026