

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES

THIRD YEAR FIRST SEMESTER EXAMINATION FOR BACHELOR OF EDUCATION (SCIENCE)

SPH 304: AC CIRCUIT THEORY

DATE:

TIME:

INSTRUCTIONS:

- The paper consists of **two** sections.
- Section **A** is **compulsory** (30 marks).
- Answer any **two** questions from section **B** (each 20 marks).

QUESTION ONE (COMPULSORY) (30 MARKS)

- a) With the aid of diagrams, distinguish between the following types of transmission lines
 - i. Co-axial line
 - ii. Open line wire
- b) A transmission line has the following per-unit-length parameters: $L = 0.5 \,\mu\text{H/m}$, $C = 200 \,\text{pF/m}$, $R = 4.0 \,\Omega/\text{m}$, and $G = 0.02 \,\text{S/m}$. Calculate the following parameters of the line at 800 MHz:
 - (i) the propagation constant γ , and (3 marks)
 - (ii) the characteristic impedance Z_0 . (3 marks)
 - (iii) If the line is 30 cm long, what is the attenuation in dB? (3 marks)

(2 marks)

(2 marks

- c) If the current in a series *RL* circuit is given by $i = 10 \sin (1.0 \times 10^3 t 25^0)$ ampere and the applied e.m.f is given by $e = 400 \sin (1.0 \times 10^3 t + 20^0)$ volts, calculate the values of *R* and *L*. (5 marks)
- d) Two circuits with impedances of $Z_1 = 10 + j15 \Omega$ and $Z_2 = 6 j8 \Omega$ are connected in parallel. If the total current supplied is 15A, determine,
 - (i) Power taken by each branch(4 marks)(ii) Power factor for the combination(3 marks)
 - (iii) Draw the circuit vector diagram. (2 marks)
- e) A 100- Ω transmission line is connected to a load consisting of a 50-Ω resistor in series with a 10-pFcapacitor as shown in Figure 1 calculate the reflection coefficient at the load for a 100-MHz signal. Transmission line A (3 marks)

QUESTION TWO (20 MARKS)

- a) Define the following terms as used in transmission lines
 - i. Propagation constant (2 marks)
 - ii. Characteristic impedance (2 marks)
- b) 15 mH inductor is in series with a parallel combination of an 80 Ω resistor and a 20 μ F capacitor. If the angular frequency of the applied voltage is $\omega = 1000$ rad/s, calculate the admittance of the network. (3 marks)
- c) For the RC series circuit shown in Figure 2, determine the frequency of the ideal generator, if the current flowing in the circuit is 1 mA (r.m.s).
 (3 marks)

- d) A 32 V 1000 Hz supply voltage is applied across a 100 ohm resistor, 400 mH inductor, and Figure 2
 - i. the rms current in the circuit? (3 marks)
 - ii. the phase angle between the voltage E and current I (3 marks)
- e) A generator whose internal resistance is 1 Ω furnishes an e.m.f of 10 V at a frequency of $\frac{10,000}{\pi}$ Hz. Design a series RLC circuit so that a potential difference of 1000 V may be developed across the capacitor. (4 marks)

QUESTION THREE (20 MARKS)

- a) Define the following terms for series AC circuitsi. Resonance (2 marks)
 - ii. Q-factor (2 marks)
- f) A transmission line has the propagation constant $\gamma = 0.1 + j10$ /m, and characteristic impedance $Z_0 = 50 + j5 \Omega$. The line is terminated with impedance $100 j30 \Omega$. Determine the impedance at a distance of 1.5 m from the load. (4 marks)
- g) A series *RLC* circuit consists of a 100 Ω resistor, an inductor of 0.318 H and a capacitor of unknown value. When this circuit is energized by $230\sqrt{2} \sin 100\pi t$ volts a.c. supply, the current is found to be $2.3\sqrt{2} \sin 100\pi t$. Calculate
 - i. the value of capacitor in microfarads. (3 marks)
 - ii. the voltage across the inductor. (3 marks)
- h) If a variable frequency e.m.f. is applied to a series RLC circuit consisting of $R = 5 \Omega$, L = 200 mH and $C = 0.05 \mu\text{F}$, determine the values of angular frequency ω for which the current will
 - i. be in-phase with applied voltage

(3 marks)

lead the applied voltage by 30° ii.

a) Define the following quantities and state their SI units

QUESTION FOUR (20 MARKS)

(i) Impedance	(2 marks)
(ii) Susceptance	(2 marks)
b) A two-wire air-line has the following line parameters: $R = 0.404$ (m	Ω /m), $L = 2.0$
(μ H/m), $G = 0$, and $C = 5.56$ (pF/m). For operation at 5 kHz, determine	
i. the attenuation constant α ,	(4 marks)
ii. the phase constant β ,	(3 marks)
iii. the characteristic impedance Z_0	(3 marks)
c) If the current in a series RC circuit is given by $i = 2\cos(1000t + 10^{\circ})$	ampere and the
applied voltage is given by $e = 100 \cos (1000t + 55^{\circ})$ volts, calculate the	values of R and
С.	(6 marks)
QUESTION FIVE (20 MARKS)	
a) What do you understand by the following terms	
i. Electrical filter circuits	(2 marks)
ii. Cut-off frequency of a filter circuit	(2 marks)
b) A high-pass RC filter consists of a 100 k Ω resistor and a 50 pF capacitor. Ca	lculate
i. the cut-off frequency f_c of the filter	(2 marks)
ii. the ratio of the peak output voltage and peak input voltage at frequency	of $0.1 f_c$
	(2 marks)
iii. At what frequency is the peak output voltage one half the peak input vol	tage? (3 marks)
c) Two admittances, $Y_1 = (0.167 - j0.167)$ S/m, and $Y_2 = (0.1 + j0.05)$ S/m	n are connected
across a 100 V, 50 Hz single-phase supply. Determine	

(4 marks) i. the current in each branch and the total current. the power factor of the combination. (3 marks) ii. (2 marks) iii. Sketch a neat phasor diagram.

(3 marks)