

MACHAKOS UNIVERSITY

University Examinations 2022/2023

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES THIRD YEAR SECOND SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE (APPLIED PHYSICS AND TECHNOLOGY)

SPH 308: SOLID STATE PHYSICS

DAT	TE:	TIME:
Inst	ructions	
Ans	wer question ONE and any other TWO questions	
QUI	ESTION ONE (30 MARKS)	
a)	Most of devices used in our homes and offices consume d.c and t	these calls for a.c
	rectification. Why then, cant Kenya power and lighting company to	ransmit electricity
	as d.c	(2 marks)
b)	The working principle of a light emitting diode is based on quantu	m theory of light.
	Explain how it happens.	(2 marks)
c)	Define the following terms:	
	i) IMPATT	(2 marks)
	ii) Schottky	(2 marks)
d)	Explain how conductivity of a semiconductor material behave at	
	i) Absolute zero temperature	
	ii) room temperature	
	iii) high temperatures	(3 marks)
e)	When an intrinsic semiconductor is doped with a pentavalent element	ent like phosphor,
	the resulting crystal is said to be electrically neutral, explain?	(3 marks)
f)	Explain how the depletion layer in a p-n junction diode is made	(3 marks)
g)	Draw a circuit that can be used for full wave a.c rectification	(3 marks)
h)	What does the acronym LASER stand for	(2 marks)

(2 marks)

Distinguish between a light emitting diode and a laser diode based on i) i) architecture ii) output characteristics (4 marks) Justify the application of a TRIAC in a. c rectification over a SCR j) (2 marks) With a diagram, explain the I-V characteristics of an IMPATT diode k) (2 marks) **QUESTION TWO (20 MARKS)** SCR is an acronym for a silicon controlled rectifier. a) i) state four of its functions. (4 marks) ii) Draw well labelled figures showing its architecture and symbol. (4 marks) iii) Using a diagram, explain working principle of a SCR. (6 marks) b) Explain two energy loss mechanisms that lower efficiency of a solar cell. (6 marks) **QUESTION THREE (20 MARKS)** Draw the structure and symbol of a schottky diode (2 marks) a) Define the following terms: b) i) Semi-conductor ii) Extrinsic semiconductor iii) inhomogeous semiconductor (6 marks Sketch solar IV characteristics and explain how they can be used to design a solar c) circuit to perform at optimum conditions (6 marks) Calculate I_E and I_B for a transistor whose $\alpha_{dc} = 0.98$ and $I_C = 0.75$ mA. What is d) (6 marks) β_{dc} ? **QUESTION FOUR (20 MARKS)** a) Draw the symbol for a LED and LASER diode (2 marks) Define a solid state device in the following contexts and give three examples in each b) case. i. computers ii. (6 marks) electronics Draw solar IV characteristic curve in a common axis for a single cell, for two cells in c) parallel and for two cells in parallel (6 marks) Given that $\beta_{dc} = 5.9$, $I_c = 3$ mA, find I_E , I_B and α_{dc} (6 marks) d)

QUESTION FIVE

- a) The working principle of a solar cell is in reverse to that of a LED and under goes three steps. Describe the three steps with well illustrated diagrams (9 marks)
- b) Distinguish between photo electric effect and photovoltaic effect (4 marks)
- Show that in a transistor base to collector current gain β_{dc} is related to emitter-tocollector current gain α_{dc} by $\alpha_{dc} = \frac{\beta_{dc}}{1 + \beta_{dc}}$ (7 marks)