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Abstract- Solar and wind, the most abundant renewable energy resources are still expensive to deploy and are unreliable as 

they are intermittent. It has long been postulated in open published literature that solar and wind have complementary regimes, 

and that their reliability can be improved by hybridization. This paper reports on the findings of research examining the 

problem of optimally sizing a hybrid wind and solar renewable energy power generation system. 

In the research, a target site was first identified and meteorological data collected. Components of the system were then 

mathematically modelled from which an objective function was developed. A parallel multi-deme implementation of genetic 

algorithm was then used to optimize. Multiple scenarios were prepared and simulated to obtain an optimal configuration of the 

hybrid power system. The results obtained were validated against openly published results from real word projects. The key 

findings confirmed that on some locations wind and solar have complementary regimes and can thus be hybridized. To this end 

an optimal configuration of the system for off-grid deployment was developed with an attractive levelized cost of energy of 17 

US cents per kWh. Another finding of the research decoupled resource optimal solutions from cost optimal solutions in that the 

least cost configuration didn’t necessary maximize on the utilization of the abundant resource. 

Keywords Energy storage; hybrid power systems; optimization methods; renewable energy sources; Genetic Algorithms; solar 

energy; wind energy 

1. Introduction 

In the wake of increasing oil prices, global warming and 

climate change, renewable energy technologies such as wind, 

solar, geothermal, biomass and hydro power have emerged as 

the green way to power our future. Geothermal, hydro power 

and biomass are limited by resource availability and high 

development costs. Wind and solar have thus been the key 

technologies towards realizing a green powered future. These 

two technologies are however faced by challenge of 

intermittency. A good power system however should be able 

to meet its demand wholly and reliably. A new emergent 

trend is the hybridization of renewable energy technologies 

with complementary characteristics. Depending on the 

location, good solar irradiance such as in summer, will imply 

poor wind speeds and in winter good wind speeds are 

experienced whereas solar insolation is low. On a daily 

distribution, wind and solar peak differently and are usually 

observed in complementary regimes, thus combination of the 

two will usually provide a better utilization factor for the 

available energy [1]. 

A hybrid wind and solar renewable energy generation 

system is proposed here. Battery Banks are also included to 

be used as energy storage. Energy storage is important in 

renewable energy power systems as they convert the jerky 

intermittent power produced into a smoother and dispatch-

able form. Additionally Energy storage systems also provide 

ride-through capacity to renewable energy power systems 

when the renewable energy sources fail to meet demand. An 

energy storage system is usually selected depending on the 

application the system is being designed for. For this case, a 

remote town in a far-flung region of Kenya is selected.  

Some of these regions have an abundance of renewable 

resources such as wind and solar that can be harnessed to 

power small remote towns and outposts in Kenya. This is 

thus a promising area of application as these remote towns 

are either powered by diesel generators which are costly to 

operate and maintain due to associated high fuel costs or are 

without power as they are usually cut off from the grid. To 

arrive at this optimal configuration, a parallel multi-deme 

genetic algorithm implementation was used for optimization.  
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2. Select Literature Review 

Genetic Algorithms are metaheuristic search algorithms 

that mimic the process of evolution by natural selection. 

They usually start with a random generation of an initial 

population of chromosomes with or without domain specific 

knowledge. The chromosomes are represented as a data 

structure of binary numbers or real numbers depending on 

the encoding method and are parameters of possible 

solutions to the problem at hand. A problem specific fitness 

function is used to map the chromosomes into a fitness value 

which is a representation of the quality of the solution they 

represent. 

Genetic Algorithm operators: Selection, Crossover and 

Mutation are then used to evolve the population from its 

current generation to the next whose average fitness value 

should ideally be better.  

New generations are thus evolved from the knowledge of 

previous generations and since the fitter individuals in the 

population are the ones selected for crossover their good 

genes (good solutions) over time dominate the population 

and the algorithm converges to an optimum. With proper 

parameter selection, GA’s are capable of obtaining a suitable 

global optimum solution.  

Various variants of Genetic Algorithms exist with 

different subtle modifications to the original algorithm. 

Worth mentioning due its popularity is adaptive GA. 

Adaptive GA has a number of variants including fuzzy 

adaptive GA involves dynamic configuration of the genetic 

algorithm’s parameters such as the mutation rate, crossover 

rate, or even population size depending on the status of the 

GA. This is in an attempt to balance and maintain precedence 

between exploration and exploitation. Below is a summary of 

literature reviewed that used Genetic Algorithms or its 

variants. 

Yang et al. [2] had 2 main concerns whilst designing a 

hybrid solar-wind power generation system: the system's 

power reliability under varying weather conditions, and the 

corresponding systems cost. In their paper they proposed an 

optimal sizing method for the optimal configuration of a 

hybrid solar -wind system with battery storage using Genetic 

Algorithms. 

Bilal et al. [3] presented the problem of optimal sizing of 

hybrid solar wind system with battery storage as a multi-

objective optimization problem solved using Genetic 

Algorithms. The system was designed for an isolated site in 

Senegal's north coast known as Potou and its principal aims 

were to minimize the annualized cost of the system and to 

minimize the loss of power supply probability (LPSP).In 

their work they also investigated the influence of load profile 

on design, they chose three load profiles with the same daily 

energy. Achieved results clearly indicated that the cost of the 

optimal configuration was strongly dependent on the load 

profile. 

Tafreshi et al. [4] presented a methodology to perform 

optimal unit sizing for Distributed Energy resources in a 

micro grid. They implemented a method based on Genetic 

Algorithms to calculate the optimal system configuration that 

could achieve a customer’s required loss of power supply 

probability (LPSP) with a minimum cost of energy (COE). 

Jemaa et al. (2013) [5] proposed a methodology to 

optimize the configuration of hybrid energy systems using 

fuzzy adaptive Genetic Algorithms. Fuzzy adaptive GA 

changes the mutation and crossover rates dynamically to 

ensure population diversity and prevent premature 

convergence. They obtained the optimal number of PV cells, 

wind turbines and batteries that ensures minimal total system 

cost whilst guaranteeing the permanent availability of energy 

to meet demand. They modelled the PV, wind generator and 

load stochastically using historical hourly wind speed, solar 

irradiance and load data. Their objective function to be 

minimized was the cost with the technical size as the 

constraint. 

3. Geospatial Resource Assessment 

Technical feasibility of renewable energy generation 

projects are usually highly dependent on geographical 

location. This is because different locations have different 

resource potentials. 

For this study, a region with strong potential for both 

solar and wind is preferable. The SWERA GIS toolkit 

available at http://en.openei.org/wiki/SWERA/Data is used 

to zero in on a location with promising solar and wind 

potential.  

The German Aerospace Centre (DLR) Global Horizontal 

Irradiance Layer is first overlaid over the digital map. 

From the geospatial resource assessment exercise, it is 

clear that a suitable location for a pilot project on hybrid 

renewable wind and solar PV generation would be need to 

have great potential for both solar and wind power 

generation. As already identified in the SWERA study for 

Kenya [6] areas around Lake Turkana, East and North East 

of Kenya have incredible potential for solar PV generation.  

The area around Lake Turkana and some areas of the Rift 

Valley and coastal region have significant potential for wind 

Fig. 1. Base Map of Kenya 
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power development. Having overlaid both resource maps 

onto the base map and filtered for only areas with significant 

wind and solar resource potential it emerges that the Lake 

Turkana area would be suitable for a hybrid wind and solar 

generation project. Coincidentally, a synoptic weather station 

exists in this region at Marsabit and a typical meteorological 

year (TMY) dataset exist.  

 

Fig. 2. DNI Map of Kenya 

  

Fig. 3. Kenya Wind Atlas at 50m above ground level 

 

Fig. 4. Geospatial overlay of commercially viable wind and 

solar potential in Kenya 

 

4. System Component Modelling 

4.1. Hybrid System Model 

The hybrid power system consists of an array of solar 

photovoltaic generators, wind turbine generators, and a 

battery bank and associated power regulation and conversion 

accessories, protection and switching equipment. Only the 

generation components are modelled in this study as they 

represent the key plant components. 

Figure below shows the system’s simplified single line 

diagram. Hybridization is carried out at the DC bus 

independent of phase and frequency constraints that would 

need to be overcome on an AC bus. 

DC/DC

Solar PV Generator

DC

Battery Energy Storage System

Wind Turbine Generator

AC

AC/DC

DC/DC

DC/AC AC BusDC Bus

Demand / Load

 

Fig. 5. Model of the hybrid system 

4.2. Solar PV Model 

According to Xu et. al [10] assuming the PV arrays are 

equipped with MPPT trackers then for modelling simplicity, 

equation (1) below sufficiently models the array power 

output.  

 

(1) 

Equation (2) , derived from above was used to model the 

total instantaneous power generation from solar for a total of 

 units. 

 

(2) 

Where, 

The output power the panel array at time instance  

is , the rated power of which is the derating 

factor considering shading and wiring loses is The 

inputs to the model are the temperature at time instance 

represented by  and the solar radiation represented by 

. and respectively are the solar radiation and 

temperature for the panel at standard test conditions. is 

the temperature coefficient which is provided by the 

manufacturer’s datasheets. 
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The de-rating factor  is determined from solar PV 

modeling best practice [7]. It is assumed in this research that 

shading is negligible and hence is not accounted for in 

determination of . This is somewhat true for utility scale 

PV applications as the layout can be such that shading from 

adjacent panels is eliminated or minimized by proper 

spacing, whereas that due to features in the topography of the 

surrounding site avoided by proper site selection and 

preparation. The remaining contributing factors are 

summarized in the table below. 

Table 1. Solar PV modelling parameters 

Parameter Value 

AC wiring 99.00% 

Array soiling 95.00% 

DC wiring 98.00% 

Diodes and 

Connections 
99.50% 

Inverter and 

transformer 
92.00% 

Mismatch 98.00% 

Panel de-rating 

factor,  
82.68% 

 

4.3. Wind Turbine Generator Model 

Xu et. al. [10] proposed to model the power output from 

a wind turbine generator using the Eq.(3) which governs the 

power output from a single wind turbine and Eq.(4), the 

power output from the assembly of   wind turbines. Wake 

losses were not considered for simplicity. 

 

 

(3) 

 

 

(4) 

Where  

is the rated power output of the wind turbine, 

is the coefficient of performance of the turbine, 

simplistically modelled from the turbine datasheet to be a 

function of wind speed only, 

is the prevailing incident wind speed adjusted to mast 

height, 

is the cut-in speed of the wind turbine taken from the 

turbine datasheet. 

is the rated speed of the turbine taken from the 

turbine datasheet. 

is the cut-off / out speed of the turbine taken from 

the turbine datasheet. 

4.4. Battery Model 

An advanced Lead Acid battery is proposed.  The 

battery’s state of charge (SOC) is an important parameter 

modelled. It is the ratio of the amount of energy stored in the 

battery to its capacity at any given instance. Diaf et. al  [54] 

determined the SOC as; 

 

(5) 

The equation above was used to update the state of 

charge of the BESS at the end of each time step. 

Where the battery self-discharge rate is given by  and 

is the length of the time step, is the BESS capacity 

in Ampere hours and the terminal battery voltage. 

The State of charge is an energy ratio hence cannot be 

plugged in directly to a power flow equation. It would be 

necessary to multiply it with the BESS energy rating. For 

simplicity in calculation, the researcher makes an assumption 

here that the BESS is able to deliver constant power over the 

duration of the time step (1 hour), the internal self-discharge 

rate is also ignored as it is negligible relative to the other 

quantities (depends on the battery technology but typically 

assumed at 0.2% per day for generic models [8]), while not 

the case in reality it greatly simplifies computational 

requirements without adversely affecting the results. With 

this assumption, the power rating and the energy rating in a 

time step are equally treated. Thus the corresponding 

available power flow from the BESS can be determined as; 

 

(6) 

In this expression, is the maximum depth of 

discharge and is the equivalent of the absolute minimum 

state of charge for the proper functioning of the BESS. It 

varies with the BESS technology used. 

The BESS charge-discharge algorithm can thus be 

written in the form of the pseudo code below; 

Table 2. Psuedocode for charge / discharge algorithm of the 

BESS 

1. If   

a. Then , all demand has been met, extra power 

generated to charge BESS 
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b. Update SOC as; 

2. Else if  

a. Check if Demand will be met with BESS addition 

b. If   

c. Demand has been met 

d. Update SOC as   

e. Provided that maximum Depth of Discharge is not 

violated: thus 

i. If    then 

ii. Revert and declare Demand not met, overwrite 

SOC as; 

 

3. Else 

a. Demand not met 

b. Nonetheless , update SOC on account of self-

discharge as 

 

 

4.5. Demand Model 

A hypothetical load model was used. It was derived from 

data made available to the researcher by the national power 

utility, Kenya Power. The data covered the month of 

September for the years 2009 to 2012. It was used to derive a 

typical daily load curve for a metropolitan area. For 

improved accuracy, two load curves are used one to represent 

typical weekdays and one to represent typical weekends and 

holidays. A base consumption figure is derived from the data 

above and adjusted to reflect growth as covered in [9].  

 
Fig. 6. Weekday demand curve 

 

Fig. 7. Weekend demand curve 

5. Optimal Sizing Algorithm 

5.1. Objective Function 

From the models above, the cost function is derived. It is 

desired that a technical feasible system is sized at a minimum 

cost. The objective function is thus in this case an economic 

cost function that is constrained with technical boundary 

conditions. These boundary conditions are discussed in the 

next section. The optimization problem is modelled around 

one technical index the Loss of Power Supply Probability 

(LPSP) to model system reliability and one economic index 

the Levelized cost of Energy (LCOE) to model cost of 

energy produced by the system. These are from here on 

referred to as the reliability objective and the cost objective. 

5.2. The Reliability Objective 

The Loss of Power Supply Probability (LPSP) introduced in 

the literature review is used here. LPSP is the probability that 

over a certain period of study, the power demand is not fully 

met by the generated power. Mathematically it is represented 

as shown below 

 

    (7) 

The period of consideration is one year in time steps of an 

hour, hence  
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In the equation above,  represents the load at a given 

time step on hour . 

 In the same definition represents the energy 

generation from the hybrid power system. In actual 

implementation,  is generated from daily load curves 

for weekdays and weekends and factors in monthly 

anticipated load growth as deduced from the 10 year power 

sector expansion plan for Kenya covering the years 2014 – 

2024 [9]. This is covered under the load model above. 

 

(8) 

Case1, applies when the total power generation from both the 

wind turbines and solar PV cells is less than the load is. The 

shortfall in power is then met by the stored energy in the 

batteries. 

Case 2, applies when the total power generation from both 

the wind turbines and solar PV cells is equal to the demand, 

and 

Case 3, applies when the total power generation from both 

the wind turbines and solar PV cells is greater than the 

demand, in this case, the surplus power is used to charge the 

batteries. 

, is the power generated by the wind turbines in the 

time step . This is expressed as in eq.(4) . , is the 

power generated by the solar photovoltaic generator in the 

time step . This is expressed as in eq.(2) . , is the 

power flow equation from or to the battery energy storage 

system in the time step . This is expressed as in equation 

(18) 

Eq.(8) can be further simplified using the Heaviside step 

function as; 

 

(9) 

From the definition of LPSP, it is clear that an LPSP of 1 

indicates that the load is never met whereas that of 0 

indicates the load is fully met. The reliability objective is 

passed as an inequality constraint in the minimization of the 

cost objective. An LPSP of 5.0% corresponding to approx. 

500hrs in a year of unmet demand is chosen as the low 

threshold for any solution to be valid. 

5.3. The Cost Objective 

The Levelized Cost of Energy (LCOE) introduced in chapter 

1 is used here. The LCOE is a convenient metric for 

measuring the overall cost competitiveness of a generating 

technology. It represents the overall project cost both in 

terms of overnight capex, operation and maintenance cost 

and discounted negative cash flows, inter alia over the 

project life divided by the total energy generated by the 

project over its entire life and is presented as dollars per 

KWh. In deriving the LCOE the following consideration are 

made: 

Costs; The initial invested capital, operating and 

maintenance costs (fixed and variable), Financing costs, 

insurance costs, Taxes, Lifecycle or Major replacement costs, 

decommissioning costs. Etc. 

Rebates and Incentives; Tax credits, Accelerated 

depreciation (MACRS), Incentives .etc. 

Energy; Annual energy production, annual degradation, 

system availability. 

The LCOE is then expressed as; 

 

(10) 

Moreover, the LCOE can be expressed either as nominal 

LCOE or as real LCOE where the real LCOE has been 

inflation adjusted to cater for the macroeconomic factors. In 

this evaluation the LCOE has not been inflation adjusted as 

its principle purpose is to be a fitness function for comparing 

multiple options in a similar setting which implies the 

macroeconomic environment remains the same hence no 

need for the adjustment. Furthermore, for efficiency in 

execution of the algorithm a simplified version of the LCOE 

is used as an objective function. The simplified LCOE does 

not factor in financing costs, insurance costs, future 

replacements and degradation as it is thought that these 

differences among the options will be marginal yet the 

savings in terms of computational resources will be 

substantial. The LCOE used is thus expressed as: 

 

(11) 

Where refers to capital costs in USD/ KW and is deduced 

as shown in below. 

 

(12) 

Where; 

is the total installed capacity in kW, 

is the PV installed capacity in kW, 

is the installed capacity of wind turbines in kW, 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
V. Okinda and N.Odero, Vol.6, No.4, 2016 

1205 
 

is the power rating of the installed battery energy 

storage units, 

And is the capital recovery factor. The capital recovery 

factor is the ratio of a constant annuity to the present value of 

receiving that annuity for a given length of time. In this 

evaluation has been based on a nominal discount rate 

as opposed to a real discount rate as the researcher has settled 

for evaluation of a nominal LCOE. is calculated as 

shown in the equation below; 

 
 

(13) 

Where the nominal annual discount rate is  and is the 

project life in years. 

The other key cost consideration is the operations and 

maintenance costs (O&M). O&M is divided into Fixed and 

Variable components. The Fixed Operations and 

Maintenance costs, in eq.(11) refers to those O&M 

costs that relate to the installed capacity of the plant and has 

the units of USD/kW.  

  (14) 

From which; 

, retain their definitions from 

eq.(12) above. 

The fixed O&M cost associated with PV technology are 

represented by  

The fixed O&M cost associated with wind turbines are 

represented by  

The fixed O&M cost associated with battery energy storage 

technology are represented by . 

The other component of the Operations and maintenance 

costs, the Variable O&M or as in eq.(11) is the O&M 

component relative to the amount of energy generated by the 

power plant. The Variable O&M costs are defined in a 

similar manner to eq.(14). Thus; 

 
 

(15) 

From which; 

is the total energy generated in the plant life in kWh, 

thus 

 
 

(16) 

is the PV generated energy in kWh, 

is the energy generated by the wind turbines in kWh, 

The Operations and maintenance costs relating to the battery 

storage unit are all modelled as Fixed O&M. This approach 

allows for simplicity in evaluation of the objective function. 

It is also the researcher’s postulation that the variable 

component in the O&M cost for the battery energy storage 

system is negligible compared to the fixed component. 

The Fuel Cost is represented by FC. In this assessment since 

generation is based on wind and solar, for which the energy 

sources are wind and solar irradiation respectively and which 

are free and abundant in nature, the fuel cost component is 

thus zero and is eliminated from the implemented cost 

objective function. 

CF in eq.(11) refers to the plant capacity factor, evaluated as  

 

(17) 

 

(18) 

The cost objective function to be minimized can thus be 

presented in full as: 

 

 

 

 

5.4. Boundary Conditions 

These are imposed on the proposed optimal solutions to 

ensure adherence to physical feasible limits and safe 

operating conditions of the power plant. The following 

conditions below are considered; 

That the reliability objective is met, an inequality constraint 

is defined as; 

 
 

(19) 
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A configuration is only a viable candidate solution if its 

Loss of Power Supply Probability (LPSP) is less than 5%. 

This corresponds only 500 hours annually of unmet demand, 

much better than the existing distribution grids nationally. 

Maximum installed capacity is benchmarked to the demand. 

A peak demand of 2 MW after factoring load growth over a 

20 year period is considered. A suitable system configuration 

would then be sought to supply this peak demand at the least 

cost. Sizing constraints are also applied on the individual 

generation technologies.  

Option 1 – Land Size based Constraints 

The number of wind turbine units is constrained by 

consideration of losses due to wake effect. Thus as developed 

by [10], for a region with area , length , and width , 

the maximum number of wind turbines that can be installed 

is then evaluated as  

 

 

(20) 

Where, is a multiplier between 6 and 10 and is a 

multiplier between 3 and 5. 

is evaluated to 14 units assuming a 10 acre piece of 

land. 

The maximum number of PV panels will also be constrained 

by the size of the land acquired for the project. Thus 

assuming a land area , and a PV panel size ; 

 

 

(21) 

The ratio of land size requirements of the balance of plant to 

the whole plant is represented by the factor . This based 

on research documented in [11] has been evaluated at around 

0.276. 

This evaluates to 117,430 units based on a 10 acre parcel of 

land. 

Minimum installed capacity is set as a lower bound of zero 

indicating that at least some capacity must be installed. 

Battery charge/ discharge constraints are handled using the 

state of charge. There is a correlation between the state of 

charge and a battery’s state of health. The higher the 

minimum state of charge, the more cycles a battery in proper 

operating conditions has. The charge / discharge constraints 

of the battery have been modelled into the performance 

objective function. 

The number of battery units , Number of installed 

panels and number of installed wind turbines are all 

bound as positive integers. This ensures only true hybrid 

systems with battery storage are considered. 

 

Option 2 – Algorithm Evaluated Constraints 

A second set of constraints is also applied. These constraints 

are engineered to constrain the optimization algorithm to 

resolve to minimum in less time. 

The Matlab code written to achieve this is in the appendix. 

The pseudocode is listed below; 

Table 3. Pseudocode for evaluation of boundary conditions, 

option 2 

1. Set BESS units to 0 

2. Run optimal sizing algorithm with random but 

reasonable upper bounds for wind and solar (base 

case assumptions used) 

3. Iterate through 8760 time steps to work out wind 

and solar potential 

4. Calculate approximate lower bounds using; 

5.  

6.  

7.  

8. Calculate approximate upper bounds using a scale 

factor of 10 as; 

9.  

 

The matrix of lower and upper bounds as determined via this 

method are listed below 

Table 4. Boundary conditions 

Case DSM Trk Lower Bounds Upper Bounds 

   S W B S W B 

D No No 1,975 4 7,879 19,750 40 7,890 

E Yes No 2,438 4 3,230 24,380 40 32,300 

F Yes Yes 3,041 3 2,103 30,410 30 21,030 

S – Solar, W – Wind, B - BESS 

Base Case 
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As the trivial solution would involve, scaling a generation 

and storage sources to match the load plus a margin, upper 

constraints are set on the installed capacities of the solar PV 

generation units, wind turbine generation units and battery 

storage system as below; 

The maximum Number of wind turbines, is set to the 1.2 

times the maximum demand divided by the rated capacity of 

a single unit. This evaluates to 10 units.  

The maximum number of PV panels is set to 2 times the 

maximum demand divided by the rated capacity of a single 

unit. This evaluates to 16000 units. 

The maximum number of battery units is calculated at 1 

times the maximum demand divided the rated power delivery 

in a single hour of each unit. This evaluates to 23809 units. 

Table 5. Base case configuration 

Base Case Assumptions (No. of units) 

Solar  Wind BESS 

16,000 10 23,809 

6. Results 

Multiple scenarios were simulated in this work in an attempt 

to find an optimal solution to the problem of sizing a hybrid 

renewable energy power system. The results have been 

documented and discussed in the previous chapter and are 

here below summarized ahead of drawing a conclusion to the 

work. Three control scenarios were set up; the base cases A, 

B and C and were found to be suboptimal as expected. In 

these control cases, a configuration of 16000 PV modules, 10 

wind turbines and 23,809 battery units was used. Further, 

scenario B included simulation of a demand side 

management scheme, whereas scenario C included 

simulation of a demand side management scheme as well as 

PV units mounted on a single axis, sun tracking racking 

system. Scenarios D, E and F were the results from the 

optimal configuration of the hybrid renewable energy power 

system based on scenarios A, B and C respectively. 

Table 6. Optimization results 

  
Wind 

(kW) 

Solar 

(kW)  

BESS 

(kWh) 

LCOE 

($/kWh) 

  

S
ce

n
a

ri
o

s 

A 4000 2500 2000 NE† 

B 4000 2500 2000 NE 

C 4000 2500 2000 31.9 

D.1 1115 8250 6601 21.51 

D.2 5078 3500 5614 30.03 

E.1 1708 6250 2708 28.26 

E.2 494 3250 9879 17.76 

                                                           
† NE – Not Evaluated, as the technical reliability condition of 
LPSP < 0.05 was not met. 

F.1 2762 3750 1763 28.02 

F.2 494 3250 7968 17.62 

7. Validation and Discussion 

The results obtained were validated by comparison with the 

Transparent Cost Database (TCD) published by openei.org. 

The transparent cost database is an initiative of the US 

department of Energy in association with the National 

Renewable Energy Laboratory (NREL). It is a public 

transparent database of program costs and performance 

estimates for energy efficiency and renewable energy 

programs that have been published in open literature. It has 

collated cost information from nearly 500 different sources in 

the last decade or so and is an authoritative benchmarking 

tool used in industry by project developers, investors, 

financiers, policy makers and regulators. 

Table 7. Comparison with the Transparent Cost Database 

(TCD) 

    

Research 

Results 

Adjusted TCD 

Nominal Case 

Adjusted 

TCD Worst 

Case 

S
ce

n
ar

io
s 

A - 21.75 41.54 

B - 21.75 41.54 

C - 21.75 41.54 

D.1 21.51 13.96 25.03 

D.2 30.03 22.49 42.90 

E.1 28.26 13.83 25.33 

E.2 17.76 17.25 31.04 

F.1 28.02 17.61 33.16 

F.2 17.62 16.80 30.22 

Table 6 documents the Levelized cost from the various plant 

layout options simulated. Three layouts; cases A, B and C 

are presented as base cases. Cases D, E and F are optimized 

configurations. Case A, the base case is as configured in 

Table 5. Case B improves the base case by simulating the 

effects of implementing a Demand Side Management 

scheme. The actual implementation of the scheme is not 

covered in the work but the desired effect of aligning the 

demand to the power supply is simulated. Case C further 

improves the specific energy yield of the PV units by 

simulating a single axis tracker mounting solution which 

desirably improves the energy for a marginal increase in 

OPEX and CAPEX which is also factored in. Scenarios D, E 

and F are optimal configurations of A B and C respectively. 

Further under each scenarios D E and F, two approaches are 

taken; approach 1 constraints the simulation algorithm using 

a separate algorithm to work out resource potential and 

strictly enforces a reliability requirement of LPSP < 0.05. 

Approach 2 constraints the simulation algorithm to the land 

size of 41000 square meters but as a trade-off lowers the 

LPSP requirement to LPSP < 0.1. Approach 1 is geared 

towards finding a long term solution with reliability pertinent 

over cost whereas approach 2 is geared towards finding a 
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medium term solution where it is anticipated that the national 

grid will expand to the area in the medium term, cost is 

pertinent over reliability. The LCOE is then calculated 

according to Equation (11) and is the key index used for the 

optimization process. 

It is not easy to directly compare the results obtained with the 

LCOE values in the TCD for a number of reasons. First, the 

TCD does not have records of hybrid renewable energy 

power plants and as such any comparative metric has to be 

derived from the measured and documented data of the TCD. 

Second, the concept of energy storage is quite different from 

energy generation and decoupling its contribution to the 

LCOE from that of the generation sources is not easy. In fact 

other scholars and research organization have now developed 

a new term; levelized cost of storage to adequately measure 

the cost of storage. Nonetheless, as the TCD is best open 

documented cost database that is freely available, an attempt 

has been made by the researcher to determine the quality of 

results obtained by comparison of these to derived metrics 

from the TCD. This information is presented on Table 7.  

The TCD Nominal Case‡ is the LCOE derived from average 

LCOE values of wind and solar generation from the TCD 

and weighted in the same proportion as the scenario to which 

it is being compared. The TCD worst case is the LCOE 

derived from the weighted average of maximum LCOE 

values of wind and solar generation from the TCD, weighted 

in the same proportion as the scenario it is being compared 

to. As the derived TCD corresponding LCOE values do not 

factor in storage, the actual corresponding LCOEs if 

calculated from the TCD to factor in storage would be worse. 

A second pair of derived metrics attempt to include the 

influence of energy storage on the LCOE value from the 

TCD. Since the overnight capital cost component of the 

energy storage as a percentage of the total project overnight 

capital cost is known, this factor is used to dilute the quality 

of the derived LCOE. The two columns adjusted nominal 

LCOE and adjusted worst case LCOE provide this 

information. The obtained results can now be compared 

against the adjusted nominal and worst case LCOE. With the 

exception of scenario E.1 all the results lie within the bounds 

of the nominal and the worst case LCOE as derived from the 

TCD. These findings satisfactorily validate the results 

obtained from this research. 

8. Conclusion 

Three optimal configurations from three scenarios 

simulated have been obtained. The system components were 

successfully modelled and an objective function developed. 

The objective function developed was a two-fold objective, 

to minimize the loss of power supply probability (LPSP) and 

the levelized cost of energy (LCOE) two parameter 

representing the reliability and cost objectives. The objective 

function was then minimized by a parallel genetic algorithm 

from which process various optimal sizing configurations of 

the plant were obtained. Multiple scenario analysis was 

carried to determine the most optimal configuration. A total 

of 9 scenarios were evaluated.  

                                                           
‡ Not included in table[] due to space constraints. 

The first conclusion drawn based on the results of this 

work is that it is feasible to develop a hybrid renewable 

energy system at certain locations e.g. Marsabit in Kenya. It 

was observed that at locations where wind and solar had 

complementary regimes, it was possible to optimally size the 

individual components of the plant to meet a certain 

reliability requirement. 

It was also concluded as can be observed from the results 

of the land size constrained simulations that a higher 

reliability requirement was achievable at a higher cost. Most 

of the scenarios with a lower reliability requirement (10% 

LPSP) resulted in lower levelized cost of energy of less than 

20 US cents per kWh, whereas the best scenario with a high 

reliability requirement (5% LPSP) resulted in a levelized cost 

of energy of 21.51 US cents per kWh. 

Another interesting conclusion drawn is that a resource 

optimal configuration does not necessarily equal a cost 

optimal configuration where the cost of utilizing the different 

resources are not the same. It was observed that in a scenario 

where demand side management was simulated to optimize 

solar utilization and the solar PV modules themselves 

mounted on a sun tracking racking system, the resulting 

optimal configuration optimizes the utilization of solar 

energy but does not yield the lowest LCOE as solar PV 

systems were more expensive than wind turbines. The clear 

conclusion in terms of the way forward seen from the results 

is that a cost optimal system is one that optimally utilizes the 

cheapest resource to exploit. This is corroborated by the 

finding that wind intensive configuration resulted in lower 

LCOE than solar intensive configurations. 

 

On the algorithm implementation and simulations, it was 

observed severally, and conclusions can be drawn that a 

parallel multi-deme genetic algorithm implementation, was 

better than a similar control experiment run in a serial 

generic GA in diversity of individuals in a search space and 

its exploration. This was measured by observing the average 

distance between individuals which was higher in the multi-

deme parallel GA as compared to the serial generic GA. On 

the quality of the final solution though, clear conclusions 

could not be drawn on which was better as they both 

converged to approximately similar solutions. 

 

From the results obtained, scenario F.2 is proposed. The 

optimization results are based on wind and solar resource 

data from the meteorological station at Marsabit located at 

2.3° north and 37.9° East at an elevation of 1345 masl and 

the proposed plant will be located within a 30 km radius. The 

plant will comprise of a solar PV generation module with 

1976 PV modules totalling a peak installed power of 494 

kWp; a wind turbine generation module comprising 13 wind 

turbine generators with a total installed capacity of 3250 kW 

and a battery storage array comprising of 94,856 units of 

advanced lead acid batteries with a total energy storage 

capacity of 7968 kWh. The PV arrays are installed in a single 

axis sun tracking racking system and a demand side 

management scheme is in place. The whole plant will occupy 

a land area of 41,000 sq. meters, however in practical 
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implementation due to consideration of wake effect in siting 

the wind turbines and shading effects in siting the solar array, 

it is unlikely that a contiguous land mass of that area is 

sufficient or practical. This introduces a new problem and a 

great direction of future research of the optimal siting of 

wind turbine and solar arrays in a hybrid wind solar power 

generation system. Even though this option has an LPSP of 

only 10%, it is by far the most cost effective resulting in an 

LCOE of 17.62 US cents per kWh. It could further be 

improved with grid storage or back up to the grid, but this 

has been left as a proposition for further work. 
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