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a b s t r a c t

In the present paper a review and numerical comparison of a special class of multi-phase
traffic theories based on microscopic, kinetic and macroscopic traffic models is given.
Macroscopic traffic equations with multi-valued fundamental diagrams are derived from
different microscopic and kinetic models. Numerical experiments show similarities and
differences of the models, in particular, for the appearance and structure of stop and go
waves for highway traffic in dense situations. For all models, but one, phase transitions can
appear near bottlenecks depending on the local density and velocity of the flow.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Traffic flow modeling has been considered on different levels of description, see [1] for a recent review: on the
microscopic level the motion of each vehicle is described. Mathematical models are generally stated using a large system
of ordinary differential equations for position and velocity of the vehicles based on Newtonian mechanics [2–6]. On the
macroscopic level the state of the system is described by averaged quantities. Typically, density and linear momentum are
used to describe the flow. The corresponding mathematical models are based on systems of nonlinear partial differential
equations derived from conservation laws with suitable closure relations. Starting from the pioneering work of Aw and
Rascle [7,8] new macroscopic models for traffic flow have been derived and investigated intensively in the last decade;
see for example [9–14]. These models avoid several inconsistencies of previous models, like wrong way traffic and missing
bounds on the density. We note that these models can be derived from microscopic models in a variety of ways, see for
example [11,15]. Finally, kinetic theory describes the state of the systemby a probability distribution function of the position
and velocity of the vehicles.Mathematicalmodels generally use integro-differential or Fokker–Planck type equations. Kinetic
equations for vehicular traffic can be found, for example, in [16–19]. Procedures to derive macroscopic traffic equations
including the Aw/Rascle model from underlying kinetic models have been performed in different ways by several authors,
see, for example, [20,21]. These procedures are developed in analogy to the transition from the kinetic theory of gases to
continuum gas dynamics.

Another basic problem of macroscopic traffic flow equations has been described by Kerner [22–24]. The observations
there suggest amore complicated dependence of the homogeneous steady speed states on density: these states are not given
by a uniquely defined function u = Ue(ρ) as in the above mentioned models, but cover a whole range in the density-flow
diagram leading to a multi-valued fundamental diagram. The resulting dynamical system has a multi-phase behavior in the
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sense of Kerner: the flow changes between different stationary states, which represents free and the so called synchronized
or jambehavior. In the context of the derivation ofmacroscopicmodels frommicroscopic ones thehomogeneous steady state
solutions can be interpreted as an emergent behavior of interactions at the microscopic scale andmultiple solutions may be
related to the heterogeneous behavior of the driver-vehicle subsystem. A variety ofmicroscopic andmacroscopicmultiphase
models has been developed by several authors. In particular, there is a large number of works on microscopic models. We
refer among many others to [25–32]. Macroscopic models for traffic flow with phase transitions in the sense of Kerner can
be found in [33,13,34,35]. However, these models do not describe phenomena like stop and go waves near bottlenecks.
For microscopic and macroscopic multiphase models exhibiting stop and go waves and similar traffic instabilities we refer
to [25,26,30,36–38]. Kinetic models allowing for multiple stationary solutions and associated macroscopic models with
multi-valued fundamental diagrams have been developed in [39–42]. We refer to [1] for a recent review and to [43–47] for
further material on the above issues.

The present paper contains a comparison and discussion of a class ofmacroscopicmodelswithmulti-valued fundamental
diagrams. We consider models of the form

∂tρ + ∂x(ρu) = 0, (1)
∂t(ρu) + ∂x(ρu2) − c(ρ)∂xu = ρR(u, τ )

with right hand side

R(ρ, u) =
ρ

T
[U(ρ, u) − u]

and fundamental diagrams given by functions U = U(ρ, u) having at least two equilibrium solutions, i.e. solutions of the
equation u = U(ρ, u) for fixed ρ out of a certain density domain, where multiphase traffic may appear.

The paper starts with a review of this class of macroscopic multi-phase models. The models are derived from either
microscopic or kinetic equations. To guarantee a proper comparison of the consideredmodels several changes to the original
models are proposed.Moreover, the parameters of the differentmodels are chosen such that the stable equilibrium solutions
are the same for all models. Then, the different models are numerically investigated for a bottleneck problem and the
appearance of stable wave patterns is shown which can be interpreted as stop-and go waves at (on ramp) bottlenecks.
This numerical comparison as well as the changes made for each of the models to make them comparable are new up to the
knowledge of the authors. We note that stable periodic waves excited by small periodic perturbations have been studied
in a series of papers also for equations with single valued right hand sides, see [48,37,49]. Remarks on these waves can be
found in Section 5.

The paper is arranged in the followingway: In Section 2 the derivation ofmacroscopic equations frommicroscopicmodels
is reviewed and applied to amulti-phase traffic model from [24,25]. In Section 3 kinetic equations are investigated and used
to derivemulti-valued fundamental diagrams. The different models are partially changed tomake them comparable to each
other. Section 4 contains a summary and comparison of the different approaches and the derivedmulti-valued fundamental
diagrams. Finally, in Section 5 numerical results are given comparing the different density-velocity relations. Moreover,
an inhomogeneous traffic flow situation with a bottleneck is investigated, showing the appearance of traffic instabilities
together with a qualitative comparison of the structure of these instabilities.

2. Continuummulti-phase traffic model derived frommicroscopic equations

2.1. From microscopic to macroscopic models

We review the classical procedure for so called ‘GeneralMotors’ (GM) type car-followingmodels, see [2,3]. Denotingwith
xi(t), vi(t), i = 1, . . . ,N the location and speed of the vehicles at time t ∈ R+, and the distance between successive cars by

li = xi+1 − xi,

we consider the microscopic equations

ẋi = vi

v̇i = C
(vi+1 − vi)

li − H
+

1
T

(U(ρi) − vi).

The local ‘‘density around vehicle i’’ and its inverse (the local (normalized) ‘‘specific volume’’) are respectively defined by

ρi =
H
li

and τi =
1
ρi

=
li
H

,

where H is the length of a car.

Remark 2.1. Here, the density is normalized and therefore dimensionless, so that themaximal density is ρm = 1/τm = 1.
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The constant C > 0 and the relaxation time T are given parameters. The function U = U(ρ), 0 ≤ ρ ≤ ρm = 1 is the so
called fundamental diagram, see [16,26,38]. The simplest choice is given by U(ρ) = 1 − ρ. One obtains the microscopic
model

ẋi = vi, (2)

v̇i =
C
H

(vi+1 − vi)

τi − 1
+

1
T

(U(ρi) − vi) .

We have

l̇i = vi+1 − vi or τ̇i =
1
H

(vi+1 − vi).

The limit of number of cars going to infinity yields the Lagrangian form of themacroscopic equations, see [11]. We obtain
the equivalent of the p-system in gas dynamics (isentropic Euler equations in Lagrangian form), compare [50],

∂T τ − ∂Xu = 0, (3)

∂Tu − c(ρ)∂Xu =
1
T
[U(ρ) − u] ,

where τ =
1
ρ
is the specific volume, i.e. the (local) dimensionless fraction of space occupied by the cars. ρ the (normalized)

density is the limit of ρi defined above, as the number of cars tends to infinity. u is the macroscopic velocity of the cars.
Moreover,

c(ρ) = C

1
ρ

− 1
−1

(4)

and the function U(ρ) is defined in the microscopic model above. We change the Lagrangian ‘‘mass’’ coordinates (X, T ) into
Eulerian coordinates (x, t) with

∂xX = ρ, ∂tX = −ρv, T = t

or

∂Xx = ρ−1
= τ , ∂T x = v.

Thus, X =
 x

ρ(y, t)dy describes the total space occupied by cars up to point x. The macroscopic system in Eulerian
coordinates is then

∂tρ + ∂x(ρu) = 0, (5)

∂t(ρu) + ∂x(ρu2) − c(ρ)∂xu =
ρ

T
[U(ρ) − u] .

For the well-posedness of the above problem we refer to [51].

Remark 2.2. The same approach works for right hand sides with multi-valued equilibrium distributions

ρ

T
[U(ρ, u) − u] . (6)

Examples are switching curve (SC) models as in [37] with

U(ρ, u) =


U1(ρ), ρ < ρf or u > S(ρ), ρf < ρ < ρj,
U2(ρ), u < S(ρ), ρf < ρ < ρj or ρ > ρj.

Here the switching curve S = S(ρ) is given. We consider the density in the (synchronized flow) region between a lower
bound of free flow ρf and an upper bound of jam traffic ρj. Then, there exists multiple stationary statesU1,U2 whose regions
of influence are separated by the switch-curve S.

A similar model is the speed-adaptation (SA) type models of Kerner [25] with

U(ρ, u) =


U1(ρ), u > Usync, ρ < ρj,
U2(ρ), u < Usync, ρ > ρf ,

where the parameter Usyn is the averaged speed, which separates the domains of influence of the two stationary states in
the 2D region of synchronized flow in the flow–density plane.
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2.2. A microscopic ATD-type model

In this section we sketch a simplified version of the microscopic acceleration time delay (ATD) model of Kerner [25]. We
consider a microscopic model with the variables space, velocity and acceleration:

ẋi = vi (7)
v̇i = ai

ȧi = F

ai, vi,

vi+1 − vi

H
,
xi+1 − xi

H


with

F

ai, vi,

∆vi

H
, τi


=


(afreei − ai)/Tdel, τi > G(vi), τi > τjam,

(asyni − ai)/Tdel, τi < G(vi), τi > τjam,

(ajami − ai)/Tdel, τi < τjam.

Here, ∆vi = vi+1 − vi and afreei , asyni , ajami denote the desired accelerations in the free, synchronized and jam region
respectively and Tdel denotes the time delay of the acceleration of the vehicle. The function G separates the free from the
synchronized acceleration behavior and will be fixed later at the end of Section 4. For a proper comparison with the above
models we change the definitions in [25] of the different accelerations slightly and define the terms as follows

afreei =
1
T

(U(ρi) − vi) +
c(ρi)

H
∆vi

asyni =
1
T
min(U(ρi) − vi, 0) +

c(ρi)

H
∆vi

ajami = −
1
T

vi +
c(ρi)

H
∆vi,

where U(ρ) and c(ρ) are given as before. This means acceleration depends on the speed difference to the predecessor and
a term relaxing to a desired acceleration.
The hydrodynamic multi-phase model. To obtain the hydrodynamic version of the microscopic model in the last section we
follow the procedure in Section 2.1. In Lagrangian coordinates we obtain directly

∂T τ − ∂Xu = 0, (8)
∂Tu = a
∂Ta = F(a, u, ∂Xu, τ ).

This leads to the following equations in Eulerian coordinates

∂tρ + ∂x(ρu) = 0, (9)
∂t(ρu) + ∂x(ρu2) = ρa
∂t(ρa) + ∂x(ρua) = ρF(a, u, τ∂xu, τ ).

A reduced model. Assuming that the delay times for acceleration are small we can reduce the above ATD-type model to

∂tρ + ∂x(ρu) = 0, (10)
∂t(ρu) + ∂x(ρu2) − c(ρ)∂xu = ρR(u, τ ),

where

R(ρ, u) =



1
T

(U(ρ) − u), τ > G(u), τ > τj,

1
T
min(U(ρ) − u, 0), τ < G(u), τ > τj,

−
1
T
u, τ < τj.

This is equivalent to

R(ρ, u) =
ρ

T
[U(ρ, u) − u]

with

U(ρ, u) =

U(ρ), τ > G(u), ρ < ρj or τ < G(u), u > U(ρ), ρ < ρj,
u, τ < G(u), u < U(ρ), ρ < ρj,
0, ρ > ρj.
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For comparisonwith the othermulti-valued fundamental diagramswe rewrite the relaxation termusing K(u) = 1/G(u):

U(ρ, u) =

U(ρ), ρ < K(u), ρ < ρj or ρ > K(u), u > U(ρ), ρf < ρ < ρj,
u, ρ > K(u), u < U(ρ), ρf < ρ < ρj,
0, ρ > ρj.

3. Multi-phase hydrodynamic equations derived from kinetic equations

3.1. Kinetic equations and correlations

The basic quantity in a kinetic approach is the single car distribution f (x, v) describing the density of cars at x with
velocity v. The total density ρ on the highway is

ρ(x) =

 w

0
f (x, v)dv,

where w denotes the maximal velocity. Let F(x, v) denote the probability distribution in v of cars at x, i.e. f (x, v) =

ρ(x)F(x, v). The mean velocity is

u(x) =

 w

0
vF(x, v)dv.

An important role is played by the distribution f (2)(x, v, h, v+) of pairs of cars being at the spatial point xwith velocity v
and leading cars at x+ hwith velocity v+. This distribution function has to be approximated by the one-vehicle distribution
function f (x, v). We use the chaos assumption

f (2)(x, v, h, v+) = q(h) f (x, v) F(x + h, v+),

compare [18]. For a vehicle with velocity v the function q(h, v; ρ, u) denotes the distribution of leading vehicles with
distance h under the assumption that the velocities of the vehicles are distributed according to the distribution function
f .

Thresholds for braking (HB) and acceleration (HA) are introduced. From a microscopic point of view drivers will brake,
once the distance between the driver and its leading car is becoming smaller than a thresholdHB andwill accelerate, once this
distance is becoming larger thanHA. Otherwise the carswill not change the velocities. Velocities are changed instantaneously
once acceleration or braking lines are reached. Models including acceleration of the cars can be developed as well; see [40]
for an example.

The distribution of leading vehicles q(h) is prescribed a priori. Themain properties, which q(h) has to fulfill are positivity,
∞

0
q(h)dh = 1,

and 
∞

0
hq(h)dh =

1
ρ

. (11)

Eq. (11) means that the average headway of the cars is 1/ρ. The leading vehicles are assumed to be distributed in an
uncorrelated way with a minimal distance HB from the car under consideration, see [18]:

q(h) = ρ̃ e−ρ̃(h−HB) χ[HB,∞)(h).
The reduced density ρ̃ has to be defined in such a way, that (11) is fulfilled. One obtains

ρ̃ =
ρ

1 − ρ HB
. (12)

We note that
qA = q(HA) = ρ̃ e−ρ̃(HA−HB)

and
qB = q(HB) = ρ̃.

Theprobability Pov = Pov(ρ, u) for overtaking or lane changing and the corresponding probability PB = 1−Pov for braking
are determined from phenomenological considerations: at constant density, free flow of cars, i.e. larger velocities will be
related to larger probabilities of overtaking or smaller probabilities of braking. So called synchronized traffic is associated
to smaller velocities and thus larger probabilities of braking. That means the probability of braking can be considered as –
for fixed density – a decaying function of velocity u. Similar arguments can be found for example in [24].

Remark 3.1. In the followingwe present a kinetic model. Note that the results likemulti-valued fundamental diagrams and
stop and go behavior of the derivedmacroscopic equations do not depend on the exact choice of themicroscopic interactions
we have chosen here. Themodel discussed in the next section is only chosen due to the fact that explicit stationary solutions
are available. We could as well have chosen models like in [21] or Fokker–Planck type models like in [40].
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3.2. The evolution equation

To write the kinetic evolution equations in a simple form we use

k = k(ρ, u) =
PB qB

qA + PBqB
and

γ = γ (ρ, u) =
qA

1 − k
= qA + PBqB.

We consider a relaxation frequency

ν = ν(k)

and define
1
T

= γ ν.

The kinetic model is then given by the following evolution equation for the distribution function f :

∂t f + v∂xf = C+(f )

= γ

k(G+

B − L+

B )(f ) + (1 − k)(G+

A − L+

A )(f ) + ν(GS − LS)(f )


(13)

with the loss and gain terms for braking interactions

G+

B (f ) =

 
v̂>v̂+

|v̂ − v̂+|σB(v; v̂, v̂+)f (x, v̂)F(x + HB, v̂+)dv̂dv̂+

L+

B (f ) =


v̂+<v

|v − v̂+|f (x, v)F(x + HB, v̂+)dv̂+.

The loss and gain terms for acceleration is defined as

G+

A (f ) =

 
v̂<v̂+

|v̂ − v̂+|σA(v; v̂, v̂+)f (x, v̂)F(x + HA, v̂+)dv̂dv̂+

L+

A (f ) =


v̂+>v

|v − v̂+|f (x, v)F(x + HA, v̂+)dv̂+.

Finally terms describing the random behavior of drivers are

GS(f ) =

 w

0
σS(v, v̂)f (x, v̂)dv̂

LS(f ) = f (v).

σB and σA denote the distribution of the new velocities v after an interaction. Reaching the braking line the vehicle
brakes, such that the new velocity v is distributed with a distribution function σB depending on the old velocities v̂, v̂+. For
acceleration the new velocity is distributed according to σA. The relaxation term is introduced to include a random behavior
of the drivers.

Remark 3.2. For further details on this Boltzmann/Enskog approach to traffic flow modeling, see [19].

Example. For the probability distributions σA, σB we choose the following simple expressions:

σB(v, v̂, v̂+) =
1

v̂ − v̂+

χ[v̂+,v̂](v) (14)

and

σA(v, v̂, v̂+) =
1

v̂+ − v̂
χ[v̂,v̂+](v). (15)

This means we have an equidistribution of the new velocities between the velocity of the car and the velocity of its leading
car. Finally,

σS(v, v̂) =
1
w

. (16)
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3.3. Stationary distributions and multi-valued fundamental diagrams

In this section we investigate the stationary homogeneous equations and determine the multi-valued fundamental
diagrams. We consider the local interaction operator:

C(f ) = γ [k(GB − LB)(f ) + (1 − k)(GA − LA)(f ) + ν(GS − LS)(f )]

with f = ρF . The gain and loss terms GB, LB, etc. are defined in the same way as G+

B , L+

B , etc., except that x + HX , X = A, B is
substituted by x, wherever it appears. The homogeneous stationary equation is

C(f ) = 0.

We assume that for fixed ρ and k there is a unique solution

f = f e = ρF e(k, v)

of this equation. This is true for the example stated above.
Thus, for fixed k the mean value of F e is then

ue(k) :=

 w

0
vF e(k, v)dv.

The function ue is uniquely determined due to the above assumption as a function of k. However, this does not yield
immediately the fundamental diagram, i.e. an equilibrium relation between flux and density.

Instead, the fundamental diagram is determined from the following considerations: let u be the (possibly multi-valued)
solution of the equation

u = ue(k(ρ, u)) (17)

for fixed ρ. If there is a unique solution we obtain a well defined relation for equilibrium velocity and density and the
usual fundamental diagram. However, in general this equation will have a multitude of different solutions u, even infinitely
many. Plotting a dependence of this solution on the density one obtains in the general case a two-dimensional region in the
density-velocity plane, where the solutions are located. The fundamental diagram is then a multi-valued function.

Remark 3.3. For the example above the homogeneous solution can be solved explicitly and the correspondingmulti-valued
solutions of Eq. (17) can be evaluated numerically. Explicit expressions for F e(k) and ue(k) can be found in [41]. A plot of
ue(k) is shown in Fig. 2.

Remark 3.4. In contrast to the other models described above the kinetic approach gives an explanation for a multi-valued
fundamental diagram using in particular the braking probability PB as a basic quantity.

3.4. Derivation of macroscopic models

In this section macroscopic equations for density and mean velocity are derived. Different procedures are described, for
example in [21,52].
Balance equations. Multiplying the inhomogeneous kinetic equation (13) with 1 and v and integrating it with respect to v
one obtains the following set of balance equations:

∂tρ + ∂x(ρu) = 0 (18)
∂t(ρu) + ∂x(P + ρu2) + E = S

with the ‘traffic pressure’

P =

 w

0
(v − u)2fdv, (19)

the Enskog flux term

E =

 w

0
v[C(f )(x, v, t) − C+(f )(x, v, t)]dv, (20)

and the source term

S =

 w

0
vC(f )(x, v, t)dv. (21)

For the present discussion we are, in particular, interested in the source term S.
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Fig. 1. Left: Frequency of random events ν(k). Right: Braking probability PB(ρ, u).

Fig. 2. Function ue(k).

Closure. We concentrate on the relaxation term and cite the results for the other terms, compare [21]. The traffic pressure
P is negligible and approximated by zero; see [21]. Moreover, the Enskog term E is approximated by linearizing expression
(20) for E in H . We obtain [21]

E ∼ −ckin(ρ)∂xu

with ckin(ρ) given by the details of the collision operator. In the following we will neglect the special form of ckin and choose
ckin = c(ρ) for comparison as in the other models described above.

Finally, the source term S has to be approximated. We use a relaxation time approximation

C(f ) ∼
1
T


f e(k(ρ, u), v) − f (v)


.

This yields

S ∼ Se(ρ, u) = ρ
1
T


ue(k(ρ, u)) − u


.

Thus, from the kinetic approach one obtains macroscopic equations of the form

∂tρ + ∂x(ρu) = 0 (22)
∂t(ρu) + ∂x(ρu2) − c(ρ)∂xu = Se(ρ, u)

with

Se(ρ, u) = ρ
1
T


ue(k(ρ, u)) − u


,

where k = k(ρ, u) is defined as

k =
PB qB

qA + PBqB
=

1

1 +
exp(−ρ̃(HA−HB))

PB

.
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Choosing HA = HB this simplifies to

k =
1

1 +
1
PB

.

Remark 3.5. One obtains a multi-valued variant of the Aw–Rascle equations with a multi-valued relaxation term on the
right hand side.

4. Comparison of multi-phase hydrodynamic models

We consider models of the form

∂tρ + ∂x(ρu) = 0, (23)
∂t(ρu) + ∂x(ρu2) − c(ρ)∂xu = ρR(u, τ )

with

c(ρ) = C

1
ρ

− 1
−1

(24)

and

R(ρ, u) =
ρ

T
[U(ρ, u) − u]

and fundamental diagrams given by functions U of the following form:
ATD-type models.

U(ρ, u) =

U(ρ), ρ < K(u), ρ < ρj or ρ > K(u), u > U(ρ), ρf < ρ < ρj,
u, ρ > K(u), u < U(ρ), ρf < ρ < ρj,
0, ρ > ρj.

SA-type models.

U(ρ, u) =


U1(ρ), u > Usync, ρ < ρj,
U2(ρ) u < Usync, ρ > ρf .

See [25] for details.
Switching curve models.

U(ρ, u) =


U1(ρ), ρ < ρf or u > S(ρ), ρf < ρ < ρj,
U2(ρ), u < S(ρ), ρf < ρ < ρj or ρ > ρj

where S(ρ) is a switching curve. For an investigation of these models, see [37].
Kinetic models:

U(ρ, u) = ue(k(ρ, u))

with

k =
1

1 +
1
PB

.

In Fig. 3 we plot the equilibrium solutions of u = U(ρ, u) together with the values U(ρ, u) − u denoting the length of
the arrows. Moreover, U(ρ̄, u) − u is plotted for fixed ρ versus u in Fig. 7.

For a proper comparison of the above models the parameters are chosen as follows:

U(ρ) = U1(ρ)

K−1(ρ) = U2(ρ), ρj > ρ > ρf

K(u) = ρf , u > U2(ρf )

U2(ρ) < Usync < U1(ρ), ρf < ρ < ρj.

Moreover, the functions ν and PB in the kinetic model are chosen such that the stable kinetic equilibrium solutions of
u = ue(k(ρ, u)) are given by U1 and U2, the unstable solution by S(ρ). This leads to the fundamental diagrams shown in
Figs. 3–6.
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Fig. 3. U(ρ, u) − u for the kinetic model. On the right: a zoom of the multi-valued region.

Fig. 4. U(ρ, u) − u for the switching curve model. On the right: a zoom of the multi-valued region.

Fig. 5. U(ρ, u) − u for the SA model. On the right: a zoom of the multi-valued region.

5. Numerical investigations

In this section we compare the different approaches numerically. First, the kinetic model is investigated and the
associated fundamental diagram is determined. Second the other three models stated in the last section are compared to
the kinetic approach and third all three approaches are used in a inhomogeneous traffic simulation with a bottleneck.

5.1. The stationary, homogeneous kinetic equation

We consider the kinetic equation and resulting fundamental diagrams. For the numerical simulations we normalize and
use w = 1.

Moreover, we choose ν as in Fig. 1. A reasonable function ν should be zero for maximal density (k = 1). In this case
there is no more random behavior of the drivers, all drivers have velocity 0. For the case k = 0 we have chosen ν as a
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Fig. 6. U(ρ, u) − u for the ATD model. On the right: a zoom of the multi-valued region.

Fig. 7. U(ρ̄, u) − u for the kinetic, switching curve, SA and ATD models.

Fig. 8. Spatio-temporal congested traffic pattern — velocity (left) and density (right) for the kinetic model.

finite quantity. If these two features are fulfilled, the qualitative behavior of the model does not depend on the exact form
of ν. The braking probability PB is plotted as well in Fig. 1.
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Fig. 9. Spatio-temporal congested traffic pattern — velocity (left) and density (right) for the switching curve model.

Fig. 10. Spatio-temporal congested traffic pattern — velocity (left) and density (right) for the SA model.

Fig. 11. Spatio-temporal congesting traffic pattern — velocity (left) and density (right) for the ATD model.

Using PB and ν described above we compute for fixed k the unique stationary solution of the homogeneous kinetic
equation and the function ue(k) following Section 3.3. The dependence of ue on k is plotted in Fig. 2.

5.2. The multi-valued fundamental diagrams

In this subsectionwe plot themulti-valued fundamental diagrams for the four cases discussed in Section 4. The functions
U1(ρ) and U2(ρ) for ATD and switching curve models were chosen as

U1(ρ) = U0 tanh


CU

T0U0


1
ρ

− 0.05


U2(ρ) = U∗

0 tanh


CU

T0U∗

0


1
ρ

− 1.1
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Fig. 12. ρu−ρ relation for the kinetic, switching curve, SA and ATDmodels upstream (x = −20), within (x = 0) and downstream (x = 5) of the bottleneck.

with U0 = 0.85, CU = 0.45, U∗

0 = 0.5, T0 = 2.9. Moreover, T = 5, C = 0.3, Usync = 0.28 and S = S(ρ) is given by
a linear function connecting U1(ρf ) and U2(ρj). The solutions of the nonlinear equation u = U(ρ, u) are plotted together
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with a plot of the quantity U(ρ, u) − u as arrows with direction ±u. Figs. 3–6 show the multi-valued fundamental diagram
(speed–density relation) for the different models. In each figure, a zoom of the multi-valued region is shown.

In all cases the values for ρf and ρj are chosen as 0.3 and 0.5 respectively such that for ρ < ρf we have only one steady
solution. For ρf < ρ < ρj three (infinitely many for ATD) solutions exist. And for the region ρ > ρj again only one solution
exists.

Moreover, Fig. 7 shows the values of U(ρ, u) − u for a fixed value ρ = ρ̄ with ρf < ρ̄ < ρj.

5.3. Numerical solution of multi-phase macroscopic equations

Finally, themacroscopic equations are investigated for a bottleneck situation. For the computationswe choose a Godunov
method, see [53]. We use a mesh size ∆x = 0.15, the Courant number λcfl = 0.99 and a computation time Tend = 400 units.
Figs. 8–11 show the velocity and density in space and time for a three lane highway with a reduction of lanes from 3 to 2 at
X = 0 for the four differentmodels. In the simulation, the lane reduction is achieved bymultiplying the density ρ in the term
on the right hand side of the equations by a factor 2

3 for X > 0 units and using a linear interpolation between the 2 regions.
Apart from the ATD-type model, one clearly observes large changes in velocity and density in the backward propagating
traffic jams whichmight be interpreted as stop and go behavior. Fig. 12 shows the flow–density relation at various locations
of the considered highway, i.e. upstream of the bottleneck (X = −20), within the bottleneck (X = 0), and downstream of
the bottleneck (X = 5). The flow rate drops from the initial value used in the simulation to settle at themaximum values for
the considered highway’s downstream location, X = 5. For the ATD model in its present form we obtain a rather different
behavior due to the zero forcing inside the multi-valued region.

Remark 5.1. The models differ in the frequency and uniformity of the waves generated at the bottleneck. The fact that the
ATDmodel does not generate stable waves in this situation does not mean that themodel is in general incapable to describe
traffic situation with such patterns. For example, in [25] situations are described where these waves appear. The models
derived from the kinetic equations can be viewed as intermediate models between the switching curve and the ATDmodel,
compare Fig. 7.

Remark 5.2. A similar investigation could be performed for the model in [33,35] with suitable right hand side.

Remark 5.3. Using the coefficient c(ρ) = Cρ as done for example in [10], we obtain similar simulation results as above, if
the parameters are suitably chosen.

Remark 5.4. The stable waves excited by small periodic perturbations as discussed in [37,48] which may also be obtained
from equationswith single valued right hand sides are usually not persistent anymore for bottleneck situations. Thesewaves
are damped out as the high density region travels backward from the bottleneck.

Summary. Multi-valued fundamental diagrams are obtained using different approaches: a derivation from microscopic
equations given in [23,25], from kinetic models as in [41] and a phenomenological macroscopic model from [37]. These
approaches are compared with each other from the point of view of their multi-valued fundamental diagrams and for
an inhomogeneous bottleneck simulations without any external excitation. Apart from the ATD-type model, all the other
models are able to show stop and go patterns for the described situation with a bottleneck without external excitation of
waves by the ingoing flow from an on-ramp.
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