

MACHAKOS UNIVERSITY

University Examinations 2016/2017

SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
FIRST YEAR SECOND SEMESTER EXAMINATION FOR DIPLOMA IN EDUCATION

SMA 0102: INTRODUCTION TO LINEAR ALGEBRA

Answer question ONE (Compulsory) and any other TWO questions QUESTION ONE (COMPULSORY) (30 MARKS)
a) Find the determinant of matrix A

$$
A=\left(\begin{array}{ccc}
5 & 4 & 2 \\
2 & 3 & 1 \\
3 & -2 & -1
\end{array}\right)
$$

b) Solve the simulteneous equation using matrix
$x+2 y=4$
$3 x-5 y=1$
c) Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$
i. Find the solution of $\mathrm{Ax}=\binom{3}{4}$
ii. Find the solution of $\mathrm{Ax}=\binom{3}{4}$
d) Let $\mathrm{u}=\binom{-2}{-9}, v=\binom{6}{-4}$. Find $-2 \mathrm{u}+5 \mathrm{v}$
e) Use Cramer's rule to solve the following system of equations
$2 x_{1}+3 x_{2}=26$
$-2 x_{1}+4 x_{2}=2$
f) By using the knowledge of determinant. Find the cross product of $\mathrm{u}=(1,2,3)^{T}$ and $v=(4,5,6)^{T}$

QUESTION TWO (20 MARKS)

a) Let $\mathrm{A}=\left(\begin{array}{cc}2 & -4 \\ -2 & -5 \\ 3 & 5\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{cc}9 & -8 \\ -6 & -6 \\ -7 & -4\end{array}\right)$. Find $\mathrm{A}+\mathrm{B}$
b) Find the matrix product AB , if it is defined

$$
A=\left(\begin{array}{cc}
0 & -2 \\
4 & 3
\end{array}\right) \quad B=\left(\begin{array}{ccc}
-1 & 3 & 2 \\
0 & -3 & 1
\end{array}\right)
$$

c) Determine whether or not the matrices are inverse of each other

$$
\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 1 & -2 \\
1 & 0 & -1
\end{array}\right) \text { and }\left(\begin{array}{ccc}
1 & -1 & 2 \\
-3 & -2 & 4 \\
-1 & 1 & 1
\end{array}\right)
$$

d) Determine the symmetric matrix corresponding to the quadratic form

$$
9 x_{1}^{2}+7 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}+4 x_{1} x_{3}-6 x_{2} x_{3}
$$

QUESTION THREE (20 MARKS)

a) Find the transpose of the following matrix $\left(\begin{array}{cccc}7 & 4 & 7 & 4 \\ 0 & -7 & 0 & -7\end{array}\right)$
b) Find the inverse of the matrix, if it exists

$$
A=\left(\begin{array}{ll}
6 & 3 \\
3 & 0
\end{array}\right)
$$

c) Reduced the following matrix into row echelon form.

$$
A=\left(\begin{array}{ccccc}
2 & 3 & 1 & 5 & 2 \\
0 & 1 & 1 & 3 & 2 \\
4 & 5 & 1 & 7 & 2 \\
2 & 1 & -1 & -1 & -2
\end{array}\right)
$$

i) Find the rank of the matrix A
ii) Find the nullity of the matrix A

QUESTION FOUR (20 MARKS)

a) Find the inverse of matrix A

$$
A=\left[\begin{array}{ccc}
4 & 1 & 7 \\
2 & -3 & 1 \\
-2 & 6 & 0
\end{array}\right]
$$

b) Determine whether the following matrix is invertible

$$
\left[\begin{array}{ccc}
9 & 5 & -9 \\
4 & 2 & -4 \\
-3 & 0 & 3
\end{array}\right]
$$

c) Find the cofactors of the following matrix

$$
\left[\begin{array}{ccc}
2 & 4 & -1 \\
0 & 3 & 1 \\
6 & -2 & 5
\end{array}\right]
$$

d) For the A and B Show that $A B \neq B A$

$$
A=\left(\begin{array}{cc}
2 & 3 \\
4 & -1
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
5 & 1 \\
-2 & 7
\end{array}\right)
$$

QUESTION FIVE (20 MARKS)

a) Find the eigenvalues of the given matrix

$$
\left(\begin{array}{cc}
-14 & -6 \\
36 & 16
\end{array}\right)
$$

b) Diagonalize the matrix

$$
\left(\begin{array}{ll}
17 & -15 \\
20 & -18
\end{array}\right)
$$

c) The following is a system of four equations with three unknowns

$$
\begin{aligned}
& x_{1}+2 x_{2}=2 \\
& 3 x_{1}+6 x_{2}-x_{3}=8 \\
& x_{1}+2 x_{2}+x_{3}=0 \\
& 2 x_{1}+5 x_{2}-2 x_{3}=9
\end{aligned}
$$

i. Write the augmented matrix of the equations
ii. Solve the system of equations by applying the reduced echelon form(Row reduction)

