

MACHAKOS UNIVERSITY

University Examinations 2016/2017

SCHOOL OF PURE AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS AND STATISTICS FIRST YEAR SECOND SEMESTER EXAMINATION FOR DIPLOMA IN EDUCATION

SMA 0102: INTRODUCTION TO LINEAR ALGEBRA

DATE: 2/6/2017

TIME: 2:00 – 4:00 PM

INSTRUCTIONS

Answer question ONE (Compulsory) and any other TWO questions

QUESTION ONE (COMPULSORY) (30 MARKS)

a) Find the determinant of matrix A

$A = \begin{pmatrix} 5 & 4 & 2 \\ 2 & 3 & 1 \\ 3 & -2 & -1 \end{pmatrix}$

b) Solve the simulteneous equation using matrix x + 2y = 4

- 3x 5y = 1c) Let $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$

(4 marks)

(6 marks)

(6 marks)

i. Find the solution of $Ax = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ ii. Find the solution of $Ax = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$

Page 1 of 3

d) Let
$$u = \begin{pmatrix} -2 \\ -9 \end{pmatrix}, v = \begin{pmatrix} 6 \\ -4 \end{pmatrix}$$
. Find -2u+5v (4 marks)

- e) Use Cramer's rule to solve the following system of equations (6 marks) $2x_1 + 3x_2 = 26$ $-2x_1 + 4x_2 = 2$
- f) By using the knowledge of determinant. Find the cross product of $u = (1,2,3)^T$ and $v = (4,5,6)^T$ (4 marks)

QUESTION TWO (20 MARKS)

a) Let
$$A = \begin{pmatrix} 2 & -4 \\ -2 & -5 \\ 3 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 9 & -8 \\ -6 & -6 \\ -7 & -4 \end{pmatrix}$. Find A+B (4 marks)

- b) Find the matrix product AB, if it is defined (6 marks) $A = \begin{pmatrix} 0 & -2 \\ 4 & 3 \end{pmatrix} B = \begin{pmatrix} -1 & 3 & 2 \\ 0 & -3 & 1 \end{pmatrix}$ c) Determine whether or not the matrices are inverse of each other (6 marks)
- c) Determine whether or not the matrices are inverse of each other (6 matrix $\begin{pmatrix}
 2 & -1 & 0 \\
 -1 & 1 & -2 \\
 1 & 0 & -1
 \end{pmatrix}$ and $\begin{pmatrix}
 1 & -1 & 2 \\
 -3 & -2 & 4 \\
 -1 & 1 & 1
 \end{pmatrix}$ d) Determine the symmetric matrix corresponding to the quadratic form (4 matrix)
- d) Determine the symmetric matrix corresponding to the quadratic form (4 marks) $9x_1^2 + 7x_2^2 + 3x_3^2 - 2x_1x_2 + 4x_1x_3 - 6x_2x_3$

QUESTION THREE (20 MARKS)

a) Find the transpose of the following matrix $\begin{pmatrix} 7 & 4 & 7 & 4 \\ 0 & -7 & 0 & -7 \end{pmatrix}$ (2 marks) b) Find the inverse of the matrix, if it exists (4 marks)

$$\mathbf{A} = \begin{pmatrix} 6 & 3 \\ 3 & 0 \end{pmatrix}$$

c) Reduced the following matrix into row echelon form. (14 marks)

$$A = \begin{pmatrix} 2 & 3 & 1 & 5 & 2 \\ 0 & 1 & 1 & 3 & 2 \\ 4 & 5 & 1 & 7 & 2 \\ 2 & 1 & -1 & -1 & -2 \end{pmatrix}$$

- i) Find the rank of the matrix A
- ii) Find the nullity of the matrix A

QUESTION FOUR (20 MARKS)

a)	Find the inverse of matrix A $A = \begin{bmatrix} 4 & 1 & 7 \\ 2 & -3 & 1 \\ -2 & 6 & 0 \end{bmatrix}$	(6 marks)
b)	Determine whether the following matrix is invertible $ \begin{bmatrix} 9 & 5 & -9 \\ 4 & 2 & -4 \\ -3 & 0 & 3 \end{bmatrix} $	(4 marks)
c)	Find the cofactors of the following matrix $ \begin{bmatrix} 2 & 4 & -1 \\ 0 & 3 & 1 \\ 6 & -2 & 5 \end{bmatrix} $	(6 marks)
d) OU	For the A and B Show that $AB \neq BA$ $A = \begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 5 & 1 \\ -2 & 7 \end{pmatrix}$ ESTION FIVE (20 MARKS)	(4 marks)
χv		
a)	Find the eigenvalues of the given matrix $\begin{pmatrix} -14 & -6 \\ 36 & 16 \end{pmatrix}$	(6 marks)
b)	Diagonalize the matrix $ \begin{pmatrix} 17 & -15 \\ 20 & -18 \end{pmatrix} $	(4 marks)
c)	The following is a system of four equations with three unknowns $x_1 + 2x_2 = 2$ $3x_1 + 6x_2 - x_3 = 8$ $x_1 + 2x_2 + x_3 = 0$ $2x_1 + 5x_2 - 2x_3 = 9$	
	i. Write the augmented matrix of the equations	(2 marks)
	ii. Solve the system of equations by applying the reduced echelon form(F	Row reduction)
		(8 marks)