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INSTRUCTIONS TO CANDIDATES 

Answer ALL the questions in Section A and ANY TWO Questions in Section B 

 

SECTION A 

QUESTION ONE (30 MARKS) COMPULSORY  

 

a) Define the following terms 

i) Open cover 

ii) Hausdorff spaces 

iii) Compact spaces 

iv) Separated sets 

v) Locally compact sets                                                                                  (5 marks) 

b) Prove that the open interval   � = (0, 1)   on the real line ℝ   with the usual topology is 

not compact.                                                                                                           (5 marks) 

c) Prove that every compact subset of a Housdorff space is closed.                         (5 marks) 

d) Show that if A and B are non-empty separated sets. Then, � ∪ 
 is disconnected   

                                                                                                                               (5 marks) 

e)   Show that every metric space is hausdorff space                                                (5 marks) 

f) Prove that if � is closed subset of a compact space X, then F is also compact.    (5 marks) 
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SECTION B 

QUESTION TWO (20 MARKS) 

a)  Define hereditary as used in topological spaces                                                      (2 marks) 

b)  Prove that �
 ��� �� spaces are hereditary                                                                (6 marks) 

c)    Let (�, �) be a topological space (�, �) is a �� space iff each singleton subset ��� is closed 

in (�, �)                                                                                                                  (6 marks) 

d)   Prove that if �, �)is a topological space which is a ��. Then every convergent sequence of 

points of X  has a unique limit.                                                                               (6 marks) 

 

QUESTION THREE (20 MARKS) 

a) Show that an infinite subset A of a discrete space X is not compact                           (7 marks) 

b) Prove that a closed subset F of a compact set X is also compact.                                (7 marks) 

c) Prove that a topological space X is compact if and only if ���� of closed subsets of X satisfies 

the finite intersection property.                                                                               (6 marks) 

 

QUESTION FOUR(20 MARKS) 

a) Prove that if A and B are disjoint compact subsets of Hausdorff spaces X. Then ∃ open set G 

and H such that � ∁ � and 
 ∁ � and � ∩ � = ∅                                                  (6 marks) 

b) Prove that if X is compact then it is countably  compact .                                           (6 marks) 

c) Prove that if X is sequentially compact then it is countably compact.                         (6 marks) 

d) Let ℤ be the set of integers. Is it sequentially compact.                                               (2 marks) 

 

QUESTION FIVE (20 MARKS) 

a) Consider the following topology on � = ��, !, ", �, #�  � = $�, ∅, ��, !, "�, �", �, #�, �"�%. Now 

� = ��, �, #�. Show that A is disconnected.                                               (5 marks) 

b) Let  � ∩ � be a disconnection of A. show that � ∩ � and � ∩ � are separated.        (5 marks) 

c) Prove that a set is disconnected if and only if it is not a union of two non-empty separated 

sets.                                                                                                             (5 marks) 

d) Let � ∪ � be a disconnection of A and B be a connected subset of A. Show that 
 ∩ � = ∅  

or 
 ∩ � = ∅.                                                                                             (5 marks) 


