# MACHAKOS UNIVERSITY 

University Examinations 2016/2017

SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
FIRST YEAR SECOND SEMESTER EXAMINATION FOR DEGREE IN
BACHELOR OF SCIENCE IN STATISTICS AND PROGRAMMING

SST 103: LINEAR ALGEBRA

## INSTRUCTIONS TO CANDIDATES

Answer ALL the questions in Section A and ANY TWO Questions in Section B

## SECTION A(COMPULSORY)

QUESTION ONE (30 MARKS)
a) Find the determinant of the following matrix

$$
A=\left(\begin{array}{lll}
2 & 3 & 6 \\
1 & 1 & 2 \\
2 & 3 & 4
\end{array}\right)
$$

b) Reduce the following matrix to be reduced echelon form

$$
A=\left(\begin{array}{cccc}
3 & 4 & -1 & 1 \\
1 & -1 & 3 & 2 \\
4 & -3 & 11 & 2
\end{array}\right)
$$

c) Solve the following simultaneous equation using inverse matrix method
$2 x-y=4$
$3 x+2 y=6$
d) If $\left|\begin{array}{cc}y & 5 \\ y & 2 y+1\end{array}\right|=4$ find $y$
e) Calculate the cross product of the vectors $\vec{u}=(1,2,3)$ and $\vec{v}=(-1,1,2)$.
f) Determine the inverse of the following matrix

$$
\left[\begin{array}{lll}
0 & 2 & 4 \\
2 & 4 & 2 \\
3 & 3 & 1
\end{array}\right]
$$

g) Determine the value of x and y for the vector ( $\mathrm{x}, \mathrm{y}, 1$ ) that is orthogonal to the vectors $(3,2,0)$ and $(2,1,-1)$.
h) Determine if $(1,2,3,1),(2,2,1,2)$ and $(-1,2,7,3)$ is linearly dependent
i) Determine the angle between $u=2 i+2 \mathrm{j}+2 \mathrm{k}$ and $v=i+j+k$

## SECTION B: ANSWER ANY OTHER TWO QUESTIONS QUESTION TWO (20 MARKS)

a) Find the rank of the following matrix

$$
\left[\begin{array}{rrr}
2 & 4 & 3 \\
3 & -3 & 2 \\
2 & 0 & 3
\end{array}\right]
$$

b) Transpose the following matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3  \tag{2marks}\\
2 & 4 & 6 \\
3 & 4 & 7
\end{array}\right)
$$

c) Find the minors, cofactors and adjoint of the following matrix

$$
\left[\begin{array}{lll}
2 & 3 & 1 \\
2 & 3 & 2 \\
1 & 3 & 1
\end{array}\right]
$$

(4 marks)
d) Find the inverse of the following matrices

$$
\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

e) Reduce the following matrix into echelon form

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 2 \\
2 & 1 & 1 & 0
\end{array}\right)
$$

## QUESTION THREE (20 MARKS)

a) Solve by Crammer's Rule

$$
\begin{aligned}
& x-2 y+3 z=10 \\
& \quad 3 x-6 y+z=22 \\
& -2 x+5 y-2 z=-18
\end{aligned}
$$

b) Determine the value of ' $a$ ' so that the following systems in unknown $x, y$ and $z$ has
i). No solution
ii). More than one solution
iii). Unique solution

$$
\begin{aligned}
x-3 z & =-3 \\
2 x+a y-z & =-2 \\
x+2 y+a z & =1
\end{aligned}
$$

c) Solve the following system of equation by elimination method
$x_{1}+x_{2}+x_{3}=5$
$x_{1}+2 x_{2}+3 x_{3}=10$
$2 x_{1}+x_{2}+x_{3}=6$
d) Solve the simultaneous equation using the gauss-Elimination method
$2 x_{1}-4 x_{2}+6 x_{3}=20$
$6 x_{1}-12 x_{2}+2 x_{3}=44$
$-4 x_{1}+10 x_{2}-4 x_{3}=-36$

## QUESTION FOUR (20 MARKS)

a) Show that $u$, v, and $w$ are linearly independent
$u=(6,2,3,4)$
$v=(0,5,-3,1)$
$w=(0,0,7,-2)$
b) Write $E=\left(\begin{array}{cc}3 & 1 \\ 1 & -1\end{array}\right)$ as a linear combination of the matrices
$A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), \quad B=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$ and $C=\left(\begin{array}{cc}0 & 2 \\ 0 & -1\end{array}\right)$
c) Calculate the value of k for the vectors $\vec{u}=(1, \mathrm{k})$ and $\overrightarrow{\boldsymbol{v}}=(-4, \mathrm{k})$ knowing that they are orthogonal.
d) Show that the vectors $u=(1,-1,0) v=(1,3,-1)$ and $w=(5,3,-2)$ are linearly dependent.

## QUESTION FIVE (20 MARKS)

a) Define a vector space
b) Show that $\mathrm{W}=\{(x, y) / x=2 y\}$ is a subspace for $\mathrm{R}^{2}$.
c) Prove that the diagonals of a rhombus are perpendicular.
d) Find the parametric and the symmetric equations of the line passing through the point $(2,3,-4)$ and parallel to the vector $(3,5,-6)$

