

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

FIRST YEAR SECOND SEMESTER EXAMINATION FOR DEGREE IN

BACHELOR OF SCIENCE IN STATISTICS AND PROGRAMMING

SST 103: LINEAR ALGEBRA

DATE: 5/6/2017

TIME: _____2:00 - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer <u>ALL</u> the questions in Section A and <u>ANY TWO</u> Questions in Section B

SECTION A(COMPULSORY)

QUESTION ONE (30 MARKS)

a) Find the determinant of the following matrix

	(2	3	6	
A =	1	1	2	(3 marks)
			4)	

b) Reduce the following matrix to be reduced echelon form

$$A = \begin{pmatrix} 3 & 4 & -1 & 1 \\ 1 & -1 & 3 & 2 \\ 4 & -3 & 11 & 2 \end{pmatrix}$$
(3 marks)

c) Solve the following simultaneous equation using inverse matrix method 2x - y = 4

 $3x + 2y = 6 \tag{3 marks}$

d) If
$$\begin{vmatrix} y & 5 \\ y & 2y+1 \end{vmatrix} = 4$$
 find y (3 marks)

- e) Calculate the cross product of the vectors $\vec{u} = (1, 2, 3)$ and $\vec{v} = (-1, 1, 2)$. (3 marks)
- f) Determine the inverse of the following matrix

$$\begin{bmatrix} 0 & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1 \end{bmatrix}$$
 (4 marks)

- g) Determine the value of x and y for the vector (x, y, 1) that is orthogonal to the vectors (3, 2, 0) and (2, 1, -1).
 (4 marks)
- h) Determine if (1,2,3,1), (2,2,1,2) and (-1,2,7,3) is linearly dependent (4 marks)
- i) Determine the angle between u = 2i + 2j + 2k and v = i + j + k (3 marks)

SECTION B: ANSWER ANY OTHER TWO QUESTIONS

QUESTION TWO (20 MARKS)

a) Find the rank of the following matrix

[2	4	3]	
3	4 -3 0	2	(4 marks)
2	0	3]	

- b) Transpose the following matrix
 - $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 4 & 7 \end{pmatrix}$ (2 marks)
- c) Find the minors, cofactors and adjoint of the following matrix
 - $\begin{bmatrix} 2 & 3 & 1 \\ 2 & 3 & 2 \\ 1 & 3 & 1 \end{bmatrix}$ (4 marks)
- d) Find the inverse of the following matrices
 - $\begin{pmatrix} \cos\theta & \sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$ (5 marks)
- e) Reduce the following matrix into echelon form

(1	0	1	1)	
0	1	1	2	(5 marks)
(2	1	1	0)	

QUESTION THREE (20 MARKS)

a) Solve by Crammer's Rule

$$x - 2y + 3z = 10$$

$$3x - 6y + z = 22$$

$$-2x + 5y - 2z = -18$$
 (5 marks)

- b) Determine the value of 'a' so that the following systems in unknown x, y and z has
 - i). No solution
 - ii). More than one solution
 - iii). Unique solution

 $6x_1 - 12x_2 + 2x_3 = 44$

$$x - 3z = -3$$

$$2x + ay - z = -2$$

$$x + 2y + az = 1$$
 (6 marks)

c) Solve the following system of equation by elimination method $x_1 + x_2 + x_3 = 5$

$$x_1 + 2x_2 + 3x_3 = 10$$

 $2x_1 + x_2 + x_3 = 6$ (4 marks)

d) Solve the simultaneous equation using the gauss-Elimination method $2x_1 - 4x_2 + 6x_3 = 20$

$$-4x_1 + 10x_2 - 4x_3 = -36$$
 (5 marks)

QUESTION FOUR (20 MARKS)

- a) Show that *u*, *v*, and *w* are linearly independent u = (6, 2, 3, 4) v = (0, 5, -3, 1) w = (0, 0, 7, -2) (5 marks) b) Write $E = \begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix}$ as a linear combination of the matrices $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix}$ (5 marks)
- c) Calculate the value of k for the vectors $\vec{u} = (1, k)$ and $\vec{v} = (-4, k)$ knowing that they are orthogonal. (5 marks)
- d) Show that the vectors u=(1,-1,0) v=(1,3,-1) and w=(5,3,-2) are linearly dependent.

(5 marks)

QUESTION FIVE (20 MARKS)

- a) Define a vector space (6 marks)
- b) Show that $W = \{(x, y) / x = 2y\}$ is a subspace for \mathbb{R}^2 . (4 marks)
- c) Prove that the diagonals of a rhombus are perpendicular. 5 marks)
- d) Find the parametric and the symmetric equations of the line passing through the point (2, 3, -4) and parallel to the vector (3,5, -6) (5 marks)