MACHAKOS UNIVERSITY

University Examinations 2016/2017
SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

FOUTH YEAR SECOND SEMESTER EXAMINATION FOR DEGREE IN BACHELOR OF EDUCATION (SCIENCE)
 BACHELOR OF EEDUCATION (ARTS)

SMA 433: PARTIAL DIFFERENTIAL EQUATIONS II
DATE: 5/6/2017
TIME: 2:00-4:00 PM
INSTRUCTION TO CANDIDATES:
Answer Question One and Any Two Other Questions.

QUESTION ONE (COMPULSORY) (30MARKS)

a) Evaluate the solution to the following initial value problem
$u_{x x}=4 x y+e^{x}$
with initial conditions

$$
\begin{equation*}
u(0, y)=y, u_{x}(0, y)=1 \tag{5marks}
\end{equation*}
$$

b) Solve the equation $\frac{\partial^{4} z}{\partial x^{4}}+\frac{\partial^{4} z}{\partial y^{4}}=2 \frac{\partial^{4} z}{\partial x^{2} \partial y^{2}}$
c) Determine the particular integral of the partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial z}{\partial y}=4 e^{2 x+4 y}
$$

d) Consider the equation
$u_{x x}+4 u_{x y}+4 u_{y y}=0$. Classify the equation and find the general solution.
e) Find the Fourier transform of $f(x)=e^{-a x^{2}} ; a>0$

QUESTION TWO (20 MARKS)
a) Obtain a partial differential equation of the first order by eliminating the arbitrary function

$$
u=e^{-y} f(x)+e^{x} g(y)
$$

b) Reduce the equation $r-x^{2} t=0$ to canonical form
c) Show that Laplace's equation in three dimensions

$$
\begin{equation*}
u_{x x}+u_{y y}+u_{z z}=0 \tag{8marks}
\end{equation*}
$$

QUESTION THREE (20 MARKS)

a) i) Determine the characteristics of equation $r-y t=0$
ii) Show under which condition the curve will be a characteristic of the partial differential equation $p^{2} r+3 p q s+2 q^{2} t=0$
b) Find the complete solution of the partial differential equation

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=(x-y) \tag{5marks}
\end{equation*}
$$

c) Reduce the equation $r+2 s+t=0$ into canonical form and solve completely the corresponding equation.
(10 marks)

QUESTION FOUR (20 MARKS)

a) An infinitely long string having one end at $x=0$ is initially at rest on the x-axis. At $t=0$ the end $x=0$ begins to move along the x-axis in a manner described by $u(0, t)=a \cos \sigma$. Find the displacement $u(x, t)$ of the string at any point at any time.
(10 marks)
b) Determine the general solution of the partial differential equation

$$
\begin{equation*}
x^{2} z_{x x}-2 x y z_{x y}-y^{2} z_{y y}-x z_{x}+y z_{y}-5 z=7 x-5 y \tag{10marks}
\end{equation*}
$$

QUESTION FIVE (20 MARKS)

Given the partial differential equation
$r-t=0$ \qquad
and five real functions $\left.\begin{array}{c}x=t \\ y=0 \\ z=t^{2}+t^{4}\end{array}\right\} \ldots \ldots$ (ii) and
Show that the five real fuctions form a strip hence interpret geometrically initial value problem in which we seek a solution of the form $z=z(x, y)$

