

MACHAKOS UNIVERSITY

University Examinations 2016/2017

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

THIRD YEAR SECOND SEMESTER EXAMINATION FOR

DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING

SUPPLEMENTARY EXAMINATION

MATHEMATICS VI

DATE: 1/9/2017 TIME: 8:30 – 10:30 AM

INSTRUCTION TO CANDIDATES:

Answer question ONE and any other TWO questions.

Show all your working.

QUESTION ONE (COMPULSORY)(30 MAKS)

1. a) Evaluate

i)
$$I = \int_{1}^{2} \int_{2}^{4} (x+2) dx dy$$
 (4 marks)

ii)
$$I = \int_{1}^{3} \int_{-1}^{1} \int_{0}^{2} (3x - y - 2z) dx dy dz$$
 (6 marks)

b) Find the double Reimann sum for the following

i)
$$\sum D_2 \sum (x^2 + y^2) \Delta x \Delta y$$
 with in the region $D_2 -2 \le x \le 2 -2 \le y \le 2$ and $\Delta x = \frac{1}{2}$ and $\Delta y = \frac{1}{2}$ (4 marks)

ii)
$$\sum D_2 \sum x^2 y \Delta x \Delta y$$
 over D_2 $0 \le x \le 1$ $x^2 \le y \le \sqrt{x}$ and $\Delta x = \frac{1}{4}$ $\Delta y = \frac{1}{5}$ (6 marks)

c) Evaluate $\iint_E \int Y + Z \, dv$ where E is the region $0 \le x \le \frac{\pi}{2}$ $0 \le y \le sinx$ $0 \le z \le y cos x$ (6 marks)

d) Find the mass of an object in the unit cube $0 \le x \le 1$ $0 \le y \le 1$ $0 \le z \le 1$ with the density $\rho(x, y, z) = x + y + z$ (4 marks)

QUESTION TWO (20 MARKS)

a) Evaluate
$$I = \int_{1}^{2} \int_{0}^{3} x^{2} y \, dx dy$$
 (6 marks)

b) Determine
$$I = \int_{1}^{2} \int_{0}^{\pi} (3 + \sin\theta) d\theta dr$$
 (6 marks)

c) Find the volume bounded by the four planes x = 0 y = 0 z = x + y

$$z = 1 - x - y \tag{8 marks}$$

QUESTION THREE (20 MARKS)

a) Evaluate
$$I = \int_1^2 \int_0^3 \int_1^{3X} y \, dy dx dz$$
 (9 marks)

b) Find the volume of the solid bounded by the planes z = 2, x = 0, x = 2, y = 1, y = 4 and the surface $z = xy + y^2$ (11 marks)

QUESTION FOUR (20 MARKS)

a) Use double integration to determine the area bounded by the curve

$$y = x^2 \qquad and \quad y = 2x - x^2 \tag{10 marks}$$

b) Let D be the region bounded by the curves $x = y^2$ x = y = 2

Evaluate the double integral $\iint_d xydA$ (10 marks)

QUESTION FIVE

a) Evaluate 10mks)

i)
$$\int_0^1 \int_0^1 \int_0^1 3y^2 + 6z^2 dz dy dx$$
. (7 marks)

ii)
$$\int_0^1 \int_0^1 \int_0^1 x^2 y z^3 dz dy dx$$
 (7 marks)

An object has constant density and the shape of a tetrahedron with the vertices at the four points (0,0,0) (1,0,0) (0,1,0) (0,0,1) find its center of mass. (6 marks)