

MACHAKOS UNIVERSITY

University Examinations 2016/2017
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
THIRD YEAR SECOND SEMESTER EXAMINATION FOR DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING

SUPPLEMENTARY EXAMINATION
MATHEMATICS VI

DATE: 1/9/2017
TIME: 8:30 - 10:30 AM
INSTRUCTION TO CANDIDATES:

Answer question ONE and any other TWO questions.
Show all your working.
QUESTION ONE (COMPULSORY)(30 MAKS)

1. a) Evaluate
i) $\mathrm{I}=\int_{1}^{2} \int_{2}^{4}(x+2) d x d y$
ii) $\mathrm{I}=\int_{1}^{3} \int_{-1}^{1} \int_{0}^{2}(3 x-y-2 z) d x d y d z$
b) Find the double Reimann sum for the following
i) $\sum D_{2} \sum\left(x^{2}+y^{2}\right) \Delta x \Delta y$ with in the region $D_{2}-2 \leq x \leq 2 \quad-2 \leq y \leq 2$ and $\Delta x=\frac{1}{2} \quad$ and $\Delta y=\frac{1}{2}$
ii) $\begin{array}{llll}\sum D_{2} \sum x^{2} y \Delta x \Delta y & \text { over } D_{2} & 0 \leq x \leq 1 & x^{2} \leq y \leq \sqrt{x}\end{array}$
and $\Delta x=\frac{1}{4}$
$\Delta y=\frac{1}{5}$
c) Evaluate $\iint_{E} \int Y+Z d v$ where E is the region $0 \leq x \leq \frac{\pi}{2} \quad 0 \leq y \leq \sin x$

$$
0 \leq z \leq y \cos x
$$

(6 marks)
d) Find the mass of an object in the unit cube $0 \leq x \leq 1 \quad 0 \leq y \leq 1 \quad 0 \leq z \leq 1$ with the density $\rho(x, y, z)=x+y+z$

QUESTION TWO (20 MARKS)

a) Evaluate $\quad \mathrm{I}=\int_{1}^{2} \int_{0}^{3} x^{2} y d x d y$
b) Determine $\mathrm{I}=\int_{1}^{2} \int_{0}^{\pi}(3+\sin \theta) d \theta d r$
(6 marks)
c) Find the volume bounded by the four planes $x=0 \quad y=0 \quad z=x+y$

$$
\begin{equation*}
z=1-x-y \tag{8marks}
\end{equation*}
$$

QUESTION THREE (20 MARKS)

a) Evaluate $\mathrm{I}=\int_{1}^{2} \int_{0}^{3} \int_{1}^{3 X} y d y d x d z$
(9 marks)
b) Find the volume of the solid bounded by the planes $\mathrm{z}=2, \mathrm{x}=0, \mathrm{x}=2, \mathrm{y}=1, \mathrm{y}=4$ and the surface $\mathrm{z}=\mathrm{xy}+\mathrm{y}^{2}$

QUESTION FOUR (20 MARKS)

a) Use double integration to determine the area bounded by the curve

$$
\begin{equation*}
y=x^{2} \quad \text { and } y=2 x-x^{2} \tag{10marks}
\end{equation*}
$$

b) Let D be the region bounded by the curves $x=y^{2} \quad x=y=2$

Evaluate the double integral $\iint_{d} x y d A$

QUESTION FIVE

a) Evaluate 10 mks$)$
i) $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} 3 y^{2}+6 z^{2} d z d y d x$.
(7 marks)
ii) $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{2} y z^{3} d z d y d x$
b) An object has constant density and the shape of a tetrahedron with the vertices at the four points $(0,0,0)(1,0,0) \quad(0,1,0) \quad(0,0,1)$ find its center of mass. (6 marks)

