

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

FIRST YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF IN COMPUTER SCIENCE

SCO 111: DIFFERENTIAL CALCULUS

DATE: 31/5/2017

TIME: 2:00 – 4:00 PM

INSTRUCTION:

d)

Answer Question ONE which is compulsory and any other TWO Questions

QUESTION ONE (30 MARKS)

a) Determine the gradient of the curve $x^2 + 2xy - 2y^2 + x = 2$ at the point (-4, 1)

(4 marks)

- b) Determine the inflection point of $f(x) = x^3 6x^2 + 9x + 1$ (4 marks)
- c) State the *L'Hôpital's Rule*, hence or otherwise evaluate

$$\lim_{x \to -3} \frac{x+3}{x^2+5x+6}$$
(3 marks)

Determine
$$\frac{dy}{dx}$$
 given that
i. $y = x^{x}$
ii. $y = (x^{2} + 3x)^{7}$

ii.
$$y = (x^2 + 3x)^7$$
 (6 marks)

e) Given
$$f(x) = \frac{x}{x+1}$$
 and $g(x) = \frac{x}{1-x}$ Determine $(f \cdot g)^{-1}$ (4 marks)

f) Prove that
$$\frac{d}{dx}(\sin x) = \cos x$$
 from the first principles the derivative of (4 marks)

g) Determine the equation of the tangent line to the curve $y = x^3$ at (1,1) (2marks)

h) Given that
$$f(0) = 8$$
, $g(0) = 5$, $f'(0) = 3$, $g'(0) = 1$, Find $F'(0)$ where

$$F(x) = \frac{f(x)}{g(x)} + 3x^{2} + 4$$
(3 marks)

QUESTION TWO (20 MARKS)

- a) Determine the values of the gradients of the tangents drawn to the circle $x^2 + y^2 3x + 4y = -1$ at x = 1 correct to two significant figures (6 marks)
- b) Using logarithmic differentiation, differentiate the following functions;
 - i. $xe^x \sin x$ (3 marks)

ii.
$$te^t \cos t$$
 (3 marks)

c) Determine
$$\frac{dy}{dx}$$
 given that $x = \frac{t}{1+t}$, and $y = \frac{t^3}{1+t}$ at the point $\left(\frac{1}{2}, \frac{1}{2}\right)$

(4 marks)

d) Find the equation of the normal line to the hyperbola $y = \frac{3}{x}$ at the point x = 3 (4 marks)

QUESTION THREE (20 MARKS)

a) Evaluate
$$\lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2}}{x}$$
 (3 marks)

b) Obtain
$$\frac{df(x)}{dx}$$
 for $f(x) = \frac{\sin x + e^{2x}}{\sin x}$ 0 (4)

marks)

c) Ink is dropped onto a blotting paper forming a circular stain which increases at the rate of $5cm^2/s$. Find the rate of change of the radius when the area is $30cm^2$ (5 marks)

d) If
$$y = 3e^{2x}\cos(2x-3)$$
, Verify that $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 8y = 0$ (8 marks)

QUESTION FOUR (20 MARKS)

a) An object moves along a coordinate line, its position at each time $t \ge 0$ given by $f(t) = 3t^2 - 7t + 4$. Find the position, velocity and acceleration at time t = 4 sec.

(3 marks)

- b) Determine $\frac{dy}{dx}$ at x = 3.1 given that $y = \frac{2x^3}{\cosh 3x}$ (5 marks)
- c) The curve of the function $f(x) = \alpha x^5 + \beta x^4 + 5x^3 1$ passes through (1,0) and has a stationary point at (1,0). Find the value of α , β , the other turning points and hence sketch the curve (12 marks)

QUESTION FIVE (20 MARKS)

- a) State the mean value theorem of differential calculus and hence determine the value of the constant "c" that satisfy the theorem in $f(x) = x^3 + 2x^2 x$, [-1,2] (6 marks)
- b) Determine the dimensions that would minimize the total surface area of an open rectangular container if it is to have a volume of $32m^3$ (8 marks)
- c) Determine the domain for each of the following functions

i)
$$y = x^3 + 3x - 6$$
 (1 mark)
ii) $y = \frac{1}{x^2 + 6x + 9}$ (2 marks)

d) Given
$$f(x) = 3x - 2$$
, determine $f^{-1}(x)$ (3 marks)