

MACHAKOS UNIVERSITY

University Examinations 2016/2017

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES

FIRST YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SPECIAL EDUCATION) BACHELOR OF SCIENCE (MATHEMATICS) BACHELOR OF EDUCATION (SCIENCE) BACHELOR OF SCIENCE (BIOLOGY)

SCH 102: ORGANIC CHEMISTRY I

DATE: 5/6/2017 TIME: 2:00 – 4:00 PM

INSTRUCTIONS:

- The paper consists of two sections.
- Section A is compulsory (30 marks).
- Answer any two questions from section B (each 20 marks).

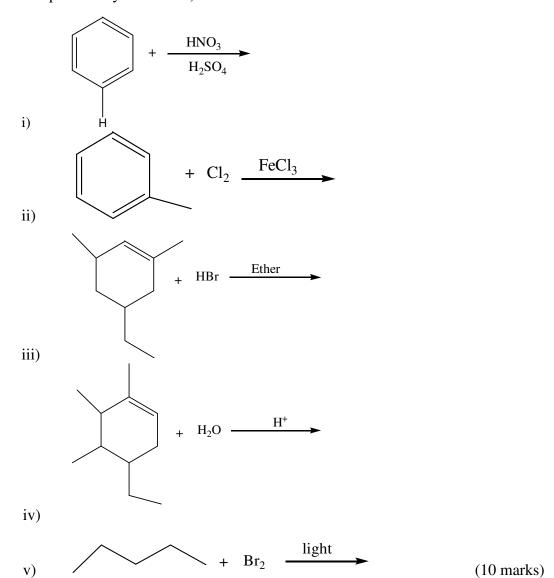
PROVIDED:

Periodic table

SECTION A – COMPULSORY (30 MARKS)

1. a) Aspirin contains 60.00% Carbon, 4.48% Hydrogen and 35.52% Oxygen. It has a molar mass of 180.17 g mol⁻¹. Determine its:

ii) Molecular formula (2 marks)


b) Provide the IUPAC names for the following structures:

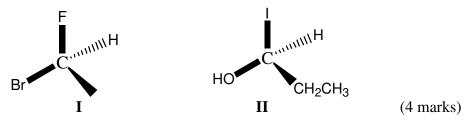
- c) Draw the structures of the following named compounds:
 - i) 2,3,4-trimethyl-1,4-octadiene
 - ii) 3-ethyl-2,2-dimethylheptane
 - iii) 2-chloro-1-hexen-3-yne
 - iv) 3-isopropyl-1,1-dimethylcycloheptane
 - v) 1-fluoro-5-ethyl-1,3-cyclohexadiene

(5 marks)

d) The organic matter in a 3.776 g sample of a mercuric ointment is decomposed with HNO₃. After dilution, the Hg²⁺ is titrated with 21.30 mL of a 0.1144 M solution of NH₄SCN. Calculate the percentage of Hg (200.59 g/mol) in the ointment. (5 marks)

e) Identify the product(s) of each of the following reactions (more than one compound may be formed).

SECTION B: ANSWER ANY TWO QUESTIONS (20 MARKS EACH)


- 2. a) Define the following terms as used in isomerism
 - i) Enantiomers
 - ii) Stereoisomers
 - iii) Optical isomers
 - iv) Constitutional isomerism

(4 marks)

- b) Draw the structural formulae for the following molecules.
 - i) Ortho-nitrophenol
 - ii) 3-phenylheptane
 - iii) 2,3,4-tribromoaniline
 - iv) para-ethyltoluene
 - v) trans-3-methyl-3-octene
 - vi) *m*-nitrochlorobenzene (6 marks)
- Provide the structures and names of two constitutional isomers of C_4H_{10} (2 marks)
- d) i) By assigning cis and trans name the following structures

$$H_3C$$
 H_3CH_2C
 $H_$

ii) Using the (R) and (S) configurations, name the following compounds:

3. a) i) Define the term electrophile

- (1 mark)
- ii) Butane reacts with chlorine by a mechanism similar to that of chlorination of methane as shown below.

$$CH_{3}CH_{2}CH_{2}CH_{3} \ \ _{+} \ Cl_{2} \ \ _{-} \ Light \\ \longrightarrow \ \ CH_{3}CH_{2}CH_{2}CH_{2}CH \ + \ \ HCl$$

Write the equations for the chain-initiating, chain-propagating and chain-terminating steps for the above reaction. (3 marks)

b) Pentene reacts with water in the presence of sulphuric acid to produce 2-pentanol as the major product as shown below. Show the reaction mechanism for the reaction.

$$CH_{3}CH_{2}CH_{2}CH = CH_{2} + H_{2}O \xrightarrow{H^{+}} CH_{3}CH_{2}CH_{2}CHCH_{3}$$

$$OH \qquad (4 marks)$$

- c) i) Distinguish the following terms:
 - I) Carbocation and Regiospecific reaction (2 marks)
 - II) S_N1 and S_N2 reactions (2 marks)
 - ii) Explain **four** factors that influence the rates of S_N1 and S_N2 reactions (8 marks)

4. a) Identify the type of hybridization for each of the following labeled atoms in the following structure.

- b) i) Define the term functional group (1 mark)
 - ii) Identify **four** reasons why functional groups are important in organic chemistry (4 marks)
 - iii)Write the functional groups of ethers, amides, carboxylic acids and esters (4 marks)
- c) An alcohol and ether have the same molecular formula C_2H_6O . Draw their structural formulae indicating their functional groups. (2 marks)
- d) Complete the following reactions by giving the structures of the missing products:

(6 marks)

iii)

- 5. a) Describe simple chemical tests that would distinguish between:
 - i) Hexane and 1-Hexene (2 marks)
 - ii) 1-Hexyne and 1-Hexene (2 marks)
 - b) Show the mechanism for the reactions given below:

(4 marks)

c) Deduce the structural formulae for the alkenes **A**, **B** and **C** that give the following products:

i)
$$A \xrightarrow{1) \text{MnO}_4^-} H_3C \xrightarrow{\text{CH}_3} CH_3 \\ \downarrow \\ \downarrow \\ \text{OH OH}$$

(3 marks)

d) Provide the products of the following reactions showing the major and the minor products where appropriate.

i)
$$H_{2}C$$

$$C_{2}H_{5}$$

$$+ H_{Br}$$

$$+ H_{2}O$$

$$H^{+}$$

$$H_{3}C$$

$$CH_{3}$$

$$+ H_{2}O$$

$$+ H_{2}$$

$$CH_{3}$$

$$+ H_{2}$$

$$CH_{3}$$

$$+ H_{2}$$

$$+ Cl_{2}$$

$$\frac{light}{}$$

(7 marks)

e) Highlight **two** uses of alkenes (2 marks)