

MACHAKOS UNIVERSITY

University Examinations for 2017/2018

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTING AND INFORMATION TECHNOLOGY

THIRD YEAR SECOND SEMESTER EXAMINATION FOR BACHELOR OF INFORMATION TECHNOLOGY

ACU SIT 311: COMPUTER ARCHITECTURE

DATE: 15/12/2017 TIME: 2		00-4.00 PM	
INS	TRUCTIONS		
Ans	wer question ONE and Any other Two among the four selective questions		
QUI	ESTION ONE (COMPULSORY) (30 MARKS)		
a)	Define interrupt	(2 marks)	
b)	Describe multiple and single implementations of bus systems.	(6 marks)	
c)	Using a well labelled diagram, explain organization of a memory	(7 marks)	
d)	By use of diagrams, describe the structure of Von Neuman Computer	(6 marks)	
e)	Describe any three types of addressing modes including an example in each.	(9 marks)	
QUI	ESTION TWO (20 MARKS)		
a)	Explain any three mapping procedures in the organization of cache memory w	vith the use	
	of example.	(9 marks)	
b)	Contrast RISC and CISC	(5 marks)	
c)	Describe the following instruction cycles using instruction cycle diagram	(6 marks)	
	i. Fetch/execute		
	ii. Interrupt driven		
QUI	ESTION THREE (20 MARKS)		
a)	Explain how ALU will perform the following arithmetic 30_{10} - 42_{10}	(6 marks)	

b)	Describe memory hierarchy indicating clearly the kind of data transferred betw		
	level		(8 marks)
c) Explain		in the following mechanisms for I/O transfer	(6 marks)
	i.	Program-controlled I/O	
	ii.	Direct Memory Access	
QUES	TION	FOUR (20 MARKS)	
a)	Using	ng a block diagram of a complete processor, explain the organization of a processor	
			(6 marks)
b)	Explai	in the concept of virtual memory and show how virtual address is mapped	to actual

a)	Using a block diagram of a complete processor, explain the organization of a processor	
		(6 marks)
b)	Explain the concept of virtual memory and show how virtual address is mapped	d to actual
	physical address.	(8 marks)
c)	Describe instruction pipeline	(6 marks)

QUESTION FIVE (20 MARKS)

a)	Evaluate $(A+B) * (C+D)$ using the following address machines.	(9 marks)
----	--	-----------

- i. Two Address Machine
- ii. Three Address Machine
- iii. One Address Machine

Differentiate PCI and SCSI buses b)

- For the following memory units (specified by the number of words the number of bits per c) word), determine the number of address lines, input/output lines and the number of bytes that can be stored in the specified memory (6 marks)
 - i. 64K x 8
 - 4G x 64 ii.

(5 marks)