MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University)
University Examinations for 2015/2016
SCHOOL OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

SECOND SEMESTER EXAMINATION FOR DIPLOMA IN CIVIL ENGINEERING

BCECD 212: STRENGTH OF MATERIALS II

Date: 21/4/2016
Time: 8:30-10:30 AM

Instructions:

- This paper comprises of five questions
- Question one is compulsory and carry 30 marks
- Answer question one and any other two questions

1. a) i) State three assumptions made in the Rankine's theory of earth pressure.
ii) Prove that in the theory in (a) above the pressure intensity at the bottom of the retaining dam, P is expressed by the expression; $P=w h\left(\frac{1-\sin \phi}{1+\sin \phi}\right)$
(7 marks)
b) A masonry dam of rectangular cross-section 10 m high and 5 m wide retains water fully on one side. If the density of the masonry is $21.582 \mathrm{kN} / \mathrm{m}^{3}$, Find;
i. the pressure due to water per meter length of the dam
ii. the resultant force and the point at which it cuts the base of the dam
c) A simply supported beam carries a uniformly distributed load of $40 \mathrm{kN} / \mathrm{m}$ over the entire span. The section of the beam is rectangular and has a depth of 500 mm . if the maximum stress in the material of the beam is $120 \mathrm{~N} / \mathrm{mm}^{2}$ and the moment of inertia of the section is $7 \times 10^{8} \mathrm{~mm}^{4}$, determine the span of the beam.
(11marks)

2 a) Using timber and steel as relevant examples, show that the total moment of resistance for a composite beam section is given by $M=\left[\frac{f_{t}}{y}\left(M I_{s}+I_{t}\right)\right]$
b) A flitched beam is simply supported over a span of 5 m and carries a uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ over the entire span. If the beam cross-section is as shown below, determine the maximum tensile and compressive stresses developed in both the materials due to the loading. (Take $\mathrm{E}_{\mathrm{s}}=210 \mathrm{kN} / \mathrm{mm}^{2}$ and $\mathrm{E}_{\mathrm{t}}=10 \mathrm{kN} / \mathrm{mm}^{2}$).
(12 marks)

3 a) With an aid of elaborate sketches describe three causes of failures to retaining structures.
(6marks)
b) State four assumptions made in the theory of simple bending
c) A $406 \mathrm{~mm} \times 152 \mathrm{~mm} \times 60 \mathrm{~kg}$ U.B section used as a simply supported beam has an effective span of 6 m and carries a total uniformly distributed load of 176.6 kN .
i) Calculate the stress in the beam at a point 102 mm beneath the top of the compression flange at a beam section 1 m from the left support
ii) Draw a stress variation diagram of the beam at the given section (take $Z_{x x}$ for the given $U . B=$ $1011 \mathrm{~cm}^{3}$)
4. The figure below shows a retaining wall which supports a cohesionless soil having a unit weight of $17.5 \mathrm{kN} / \mathrm{m}^{2}$ and an angle of shearing resistance of 30°. If the unit weight of the wall is $25 \mathrm{kN} / \mathrm{m}^{3}$ and a surcharge load of $22.5 \mathrm{kN} / \mathrm{m}^{2}$ is applied to the surface of the soil;
i. Calculate the maximum and minimum ground bearing pressures occurring beneath the base of the wall
ii. Check the stability of the wall with respect to overturning, sliding and tension in the joints

5. a) Calculate the stresses, bending and shear for the beam shown below if the beam is simply Supported 6 m long and carries a uniformly distributed load of $40 \mathrm{kN} / \mathrm{m}$ over its entire span. Also sketch the shear stress variation diagram for the section.

b) Calculate the safe moment of resistance of the beam section shown in the figure in 4 (a) above if the stresses in the upper and lower flanges are limited to $30 \mathrm{~N} / \mathrm{mm}^{2}$ and $20 \mathrm{~N} / \mathrm{mm}^{2}$ respectively.

