

MACHAKOS UNIVERSITY

University Examinations 2017/2018

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

FIRST YEAR FIRST SEMESTER EXAMINATIONS FOR DIPLOMA IN AGRICULTURE

MAT 0100: BASIC MATHEMATICS

DATE: 6/12/2017

TIME: 2.00-4.00 PM

INSTRUCTIONS

Attempt question **one** which is a compulsory question and any other **two** questions.

Show all your working

1. a) For each of the following relations defined over a set X and codomain Y state whether

The relation is "into" or "onto". State also whether it is "one-one", "onemany" or "many-many"

- i) "is the square root of" $X = \{-1,0,1\}, Y = \{y: 0 \ll y \ll 1\}$ (3 marks)
- ii) "is equal to" $X = \{1,2,3\}, Y = \{y: 1 \ll y \ll 3\}$ (3 marks)
- iii) $x \rightarrow 3x + 2$ (3 marks)
- b) For the following functions find a domain for the given range
 - i) $f_1: x \to x^2$ range = { $y: 1 \ll y \ll 4$ } (2 marks)
 - ii) $f_2: x \rightarrow log_{10}x \text{ range} = \{y: 0 \ll y \ll 2\}$ (2 marks)
- c) Solve for $0^0 \ll \theta \ll 360^0$ given
 - i) $\sin\theta = 0.25$ (2 marks)
 - ii) $5 8\cos\theta = 0$ (4 marks)

d) Find the inverse of each of the following functions assuming that a suitable

subset of R has been defined for the domain.

		i) $f: x \to \frac{1}{3}x - 5$				
		ii) $f: x \to \frac{x+3}{x-2}$				
		iii) fg given that $f: x \to 7x + 2$ and $g: x \to \frac{x-2}{7}$				
2.	a)	Find the inverse of the following functions				
		i) f: $x \to 3x - 5$	(2 marks)			
		ii) f: $x \to \sqrt{x+1}$	(2 marks)			
		iii) f: $x \rightarrow \frac{\pi}{7}$	(2 marks)			
		iv) f: $x \to \frac{1}{x} + 1$	(2 marks)			
	b)	If $\epsilon = [natural numbers less than 20]$, A = [prime numbers]] and			
		B = [odd numbers]				
		i) Show the sets in a venn diagram				
		ii) List the elements of $A \cap B$, $(A \cup B)'$ and $A \cap B'$	(5 marks)			
	c)	In each of the following, find the range of the composite functions	fg for the			
		given domain X :				
		i) If $f: x \rightarrow 3x + 5$ and $g: x \rightarrow 7x - 2$ given $X = [2,3,4]$				
		ii) If $f: x \to x^2 + 1$ and $g: x \to 2x + 3$ given $X = [0,1,2]$				
		iv) If $f: x \to x^2 + 1$ and $g: x \to 2x + 3$ given $X = -2 \le x$	≤ 2			
3.	a)	solve for $0^0 \ll \theta \ll 360^0$				
		i) $1 + \cos\theta = 2\sin^2\theta$	4 marks)			
		ii) $\cos^2\theta + \cos\theta + 1 = 1$	(4 marks)			
	b)	The first three terms of a G.P are the first fourth and tenth terms of	an A.P.			
		Given that the first term is six and that all the terms of the G.P are different,				
		Find the common ratio.	(6 marks)			
	c)	The second term of a geometric sequence is 64. The fifth term is $\frac{1}{8}$.	Find the			
		first four terms of the sequence.	(7 marks)			

4. a) Find the inverse of the function.

i)
$$f; x \rightarrow \frac{x+1}{x-2} \quad (x \neq 2)$$
 (3 marks)

ii)
$$g; x \to 2 + \frac{3}{x} (x \neq 0)$$
 (3 marks)

b) At recent school prize day 18 O-level certificate were awarded in History, 17 in Geography and 20 in Economics. 3 candidates received all three certificates, while 5received only History and Geography, 2 received only Geography and Economics, and 9 received only History and Economics. How many candidates were awarded at least one of the certificates.

c) Solve the following equations for
$$0 \le \theta \le 360$$

i) $3-3\cos\theta = 2\sin^2\theta$ (4 marks)

(6 marks)

ii)
$$\sec^2\theta = 3\tan\theta - 1$$
 (4 marks)

5. a) Prove the following identities

i)
$$\tan \theta + \cot \theta = \frac{1}{\sin \theta \cos \theta}$$
 (4 marks)

ii)
$$\frac{\cos\theta}{\sqrt{1+\tan^2\theta}} + \frac{\sin\theta}{\sqrt{(1+\cot^2\theta)}} = 1$$
 (4 marks)

b) In triangle ABC lengths AB=9.8cm, BC=12.7cm and the area of the triangle is 53.5cm², calculate;

i) the	includ	ed acute	angle.
--------	--------	----------	--------

- ii) the length of the third side. (7 marks)
- c) Find without using tables or calculator the value of ;
 - i) $\sin(120^{\circ} + 45^{\circ})$
 - ii) $\cos 105^0$ leaving surds in your answer. (5 marks)