

MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University)
University Examinations 2015/2016
SCHOOL OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

SECOND SEMESTER EXAMINATION FOR DEGREE IN BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECV 207: FLUID MECHANICS
Date: 18/4/2016
Time: 8:30-10:30am

INSTRUCTIONS

- This paper comprises five questions
- Answer question number one and any other two questions
- All the optional questions carry equal marks
- Candidates to have relevant design manuals

QUESTION ONE (30 MARKS)

a) Parametric equation for the position of a particle in a flow field are given as

$$
x_{p}=c_{1} e^{a t} \text { and } y_{p}=c_{2} e^{-b t}
$$

i) Find the equation of the path line for allocation at (x,y) $=(1,2)$ at $t=0$. (2marks)
ii) Compare with a streamline through the same point. (1mark)
b) A source with strength $0.2 \mathrm{~m}^{3} /(\mathrm{sm})$ and a vortex with strength $1 \mathrm{~m}^{2} / \mathrm{s}$ are located at the origin.
i) Determine the equations for velocity potential and stream function. (1mark)
ii) Calculate the velocity components at $x=1 \mathrm{~m}, y=0.5 \mathrm{~m}$
(2 marks)
c) Water flows through a 2 cm diameter pipe at $1.6 \mathrm{~m} / \mathrm{s}$.

Calculate:
i) The Reynolds number (2 marks)
ii) The velocity required to give the same Reynolds number when the pipe is transporting air.
(Kinematic viscosity of water is $1.31 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. And kinematic viscosity of air is $15.1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, density is $1.19 \mathrm{~kg} / \mathrm{m}^{3}$).
d) Water flows steadily up the vertical 0.1 m diameter pipe and out the nozzle, which is 0.05 m in diameter, discharging to atmospheric pressure, as shown in figure 1. The stream velocity at the nozzle exit must be $20 \mathrm{~m} / \mathrm{s}$. Calculate the minimum gauge pressure required at section (1).

Fig. 1
e) In figure 2, A pump draws water through a $20-\mathrm{cm}$ suction pipe and discharges it through a $10-\mathrm{cm}$ pipe in which the velocity is $3 \mathrm{~m} / \mathrm{s}$. The $10-\mathrm{cm}$ pipe discharges horizontally into air at point C. Calculate height above the water surface at A that the water can be raised if 35 kW is delivered to the pump. Assume that the pump operates at 60% efficiency and that Ghe head loss in the pipe between A and C is equal to $2 V^{2} / 2 g$.Assume $\alpha=1.0$ at all locations.

Fig. 2
f) An incompressible fluid flows over a flat with zero pressure gradient. The boundary layer thickness is 1 mm at a location where the Reynolds number is 1000 . If the velocity of the fluid alone is increased by a factor 4, show that the boundary layer thickness at the same location, is 0.5 mm
g) In figure 3, a reservoir is circular in plan and the sides slope at an angle of $\tan ^{-1}(1 / 5)$ to the horizontal. When the reservoir is full the diameter of the water surface is 50 m . Discharge from the reservoir takes place through a pipe of diameter 0.65 m , the outlet being 4 m below top water level. Determine the time for the water level to fall 2 m assuming the discharge to be ${ }^{0.75 a \sqrt{2 g H}}$ cumecs where a is the cross sectional area of the pipe in m^{2} and H is the head of water above the outlet in meters

Fig. 3
h) A pump draws water through a $20-\mathrm{cm}$ suction pipe and discharges it through a $10-\mathrm{cm}$ pipe in which the velocity is $3 \mathrm{~m} / \mathrm{s}^{2}$. The $10-\mathrm{cm}$ pipe discharges horizontally into air at point C as shown in figure 4 . Calculate height h above the water surface at A that the water can be raised if 35 kW is delivered to the pump. Assume that the pump operates at 80% efficiency and that the head loss in the pipe between A and C is equal to $2 V^{2} / 2 g$. Assume $\alpha=1.0$ at all locations.

Fig. 4

QUESTION TWO (20 MARKS)

An air speed indicator consisting of a converging-diverging duct is shown in Figure 5. The diameter of the duct at 2 is three-quarters of the entrance diameter $t 1$. The differential pressure gauge records a pressure of 4000 Pa , and the density of the air is $1 \mathrm{~kg} / \mathrm{m}^{3}$. (The air flow is steady, incompressible, in viscid and irrotational). Determine the airspeed U.

Fig. 5

QUESTION THREE (20 MARKS)

In figure 6, a smooth flat plate with a sharp leading edge is placed along a gas stream flowing at $\mathrm{U}=10 \mathrm{~m} / \mathrm{s}$. The thickness of the boundary layer at section $\mathrm{r}-\mathrm{s}=10 \mathrm{~mm}$, the breadth of the plate is 1 m (onto the paper) and the density of the gas $\rho=1.0 \mathrm{~kg} / \mathrm{m}^{3}$. Assume that the boundary layer is thin, two dimensional, and follows a linear velocity distribution, $u=U(y / \delta)$, at the section r-s, where y is the height from plate.

Fig. 6
Show:
i) That the mass flow rate (in kg / s) across the section $\mathrm{q}-\mathrm{r}$ is $0.05 \mathrm{~kg} / \mathrm{s}$
ii) The integrated drag force (in N) on the plate, between p-s, is 0.17 N

QUESTION FOUR (20 MARKS)

In figure $7, d=25 \mathrm{~cm}, D=40 \mathrm{~cm}$, and the head loss from the venture meter to the end of the pipe is given by $h_{L}=0.9 V^{2} / 2 g$, where V is the velocity in the pipe. Neglecting all other head losses, determine what head H will first initiate cavitation if the atmospheric pressure is 100 k Pa absolute. Calculate the discharge eat incipient cavitation. Assume $\alpha=1.0$ at all locations.

Fig 7

QUESTION FIVE (20 MARKS)

In figure 8 , a rectangular swimming pool is 1 m deep at one end and increases uniformly in depth to 2.6 m at the other end. The pool is 8 m wide and 32 m long and is emptied through an orifice of area $0.224 \mathrm{~m}^{2}$, at the lowest point in the side of the deep end. Taking C_{d} for the orifice as 0.6 , find, from first principles,
a) the time for the depth to fall by 1 m
b) the time to empty the pool completely.

Fig. 8

