MACHAKOS UNIVERSITY

University Examinations 2017/2018
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
FOURTH YEAR SECOND SEMESTER EXAMINATIONS FOR BACHELOR OF
SCIENCE IN STATISTICS AND PROGRAMMING
SMA 402: BAYESIAN STATISTICS
DATE: 19/12/2017
TIME: 2.00-4.00 PM
INSTRUCTIONS answer question ONE and any other TWO questions. QUESTION ONE
a) Carefully outline the main stages of a typical Bayesian analysis procedure. (4 marks)
b) Define the following terms as used in Bayesian statistics:
i. Bayes estimator.
ii. Minimax estimator
iii. Highest posterior density interval (HPD)
c) Let X be a sample of size n from a normal distribution with mean θ and variance 1 .

Consider estimating θ with squared error loss using two estimators:

$$
\hat{\theta}(x)=2 x \text { and } \hat{\theta}_{M L E}(x)=x
$$

Determine which of the two estimators is inadmissible.
d) Differentiate between the following terms as used in Bayesian statistics:
i. Confidence intervals and Credible intervals
ii. Prior distribution and posterior distribution
e) Suppose $x_{1}, x_{2}, \ldots ., x_{n}$ each have an exponential distribution with parameter θ, and suppose that the prior for θ is an exponential distribution with parameter λ. Find the posterior distribution of θ.

QUESTION TWO

a) Let $X_{1}, X_{2}, \ldots ., X_{n}$ be i.i.d random variables having a normal distribution with unknown mean μ and known variance δ^{2}.Assuming a prior normal distribution for μ with mean
μ_{0} and variance $\delta_{0}{ }^{2}$.Show that the posterior distribution for μ is normally distributed with mean μ_{*} and variance $\delta_{*}{ }^{2}$ where;

$$
\begin{equation*}
\mu_{*}=\delta_{*}{ }^{2}\left(\frac{\mu_{0}}{\delta_{0}{ }^{2}}+\frac{n \bar{x}}{\delta^{2}}\right) \text { and } \delta_{*}{ }^{2}=\left(\frac{1}{\delta_{0}{ }^{2}}+\frac{n}{\delta^{2}}\right)^{-1} \tag{10marks}
\end{equation*}
$$

b) Let $X_{1}, X_{2}, \ldots ., X_{10}$ be i.i.d random variables having a normal distribution with unknown mean θ and known variance 1.Assuming a prior normal distribution for θ with mean zero and variance 5 . Let the sample mean be $\bar{x}=1.873$
i. Compute the posterior distribution of θ
ii. Compute the 95% credible intervals for θ.

QUESTION THREE

a) Define the following terms :
i. Loss function.
ii. Risk function
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent observations from a population with density function $f(x / \theta)$ where θ is unknown parameter. Let $\delta(x)$ and $\lambda(\theta)$ denote the Bayes estimator of $g(\theta)$ and prior distribution of θ respectively. By considering a quadratic loss function of the form $L(\delta(x), \theta)=C(\theta)[\delta(x)-g(\theta)]^{2}$ where $C(\theta) \geq 0$, show that $\delta(\underline{x})=E[g(\theta) / \underline{x}]$
c) Given $f(x / p)=\left\{\begin{array}{lc}p(1-p)^{x-1}, & 0 \leq p \leq 1 \\ 0, & \text { otherwise }\end{array}\right.$

Suppose that the prior distribution of p is;
$h(p)= \begin{cases}1, & 0 \leq p \leq 1 \\ 0, & \text { otherwise }\end{cases}$
Find the Bayes estimator of p with respect to the loss function defined as ;
$L(\delta(x), p)=C(p)[\delta(x)-p]^{2}$ where $C(p) \geq 0$.

QUESTION FOUR

a) Let $X_{1}, X_{2}, \ldots ., X_{n}$ be n independent observations from
$f(x / \theta)=\left\{\begin{array}{lr}\theta^{x}(1-\theta)^{1-x}, \quad x=0,1 \\ 0, & \text { otherwise }\end{array}\right.$
Let $L(\delta(x), \theta)=[\delta(x)-\theta]^{2}$. Show that the minimax estimator of θ for the squared error loss function is;

$$
\begin{equation*}
\delta(\underline{x})=\frac{\bar{x} \sqrt{n}}{1+\sqrt{n}}+\frac{1}{2(1+\sqrt{n})} \text { where } \bar{x}=\frac{\sum x_{i}}{n} \tag{15marks}
\end{equation*}
$$

b) Define conjugacy and explain why or why not, the beta prior is conjugate with respect to the negative Binomial likelihood.
(5 marks)

QUESTION FIVE

a) Suppose that $X_{1}, X_{2}, \ldots, X_{n} / \theta \approx i . i . d$ Poisson (λ).
i. What prior is conjugate for the Poisson likelihood? Give the distribution for λ along with any associated parameters.
ii. Calculate the posterior distribution of λ / \underline{x} using your prior in (i).
b) The numbers of sales of a particular item from an internet retail site in each of 18 weeks are recorded. Assume that, given the value of a parameter λ, these numbers are independent observations from the Poisson (λ) distribution.

Our prior distribution for λ is a gamma (α, β) distribution.
i. Our prior mean and standard deviation for λ are 16 and 8 respectively. Find the values of α and β.
ii. The observed numbers of sales are as follows.
$14,19,14,21,22,33,15,13,16,19,27,21,16,25,14,23,22,17$.
Find the posterior distribution of λ.
iii. Find a 95% posterior hpd interval for λ.
(Note: If $X \sim \operatorname{gamma}(\alpha, \beta)$, i.e $f(x)=k x^{\alpha-1} e^{(-\beta x)}$, then the mean of X is $E(X)=\alpha / \beta$ and the variance of X is $\left.\operatorname{var}(X)=\alpha / \beta^{2}\right)$
c) Discuss briefly the following Makov Chains Monte Carlo methods (MCMC) methods.
i. Gibbs sampling.
ii. Metropolis Hastings

