

MACHAKOS UNIVERSITY

University Examinations 2017/2018

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

FOURTH YEAR SECOND SEMESTER EXAMINATIONS FOR BACHELOR OF SCIENCE IN STATISTICS AND PROGRAMMING

SMA 402: BAYESIAN STATISTICS

DATE: 19/12/2017 TIME: 2.00-4.00 PM

INSTRUCTIONS answer question <u>ONE</u> and any other <u>TWO</u> questions.

QUESTION ONE

- a) Carefully outline the main stages of a typical Bayesian analysis procedure. (4 marks)
- b) Define the following terms as used in Bayesian statistics:
 - i. Bayes estimator.
 - ii. Minimax estimator
 - iii. Highest posterior density interval (HPD)

(6 marks)

c) Let X be a sample of size n from a normal distribution with mean θ and variance 1. Consider estimating θ with squared error loss using two estimators:

$$\hat{\theta}(x) = 2x$$
 and $\hat{\theta}_{MF}(x) = x$

Determine which of the two estimators is inadmissible.

(6 marks)

- d) Differentiate between the following terms as used in Bayesian statistics:
 - i. Confidence intervals and Credible intervals

(4 marks)

ii. Prior distribution and posterior distribution

(4 marks)

e) Suppose $x_1, x_2, ..., x_n$ each have an exponential distribution with parameter θ , and suppose that the prior for θ is an exponential distribution with parameter λ . Find the posterior distribution of θ . (6 marks)

QUESTION TWO

a) Let $X_1, X_2, ..., X_n$ be i.i.d random variables having a normal distribution with unknown mean μ and known variance δ^2 . Assuming a prior normal distribution for μ with mean

 μ_0 and variance δ_0^2 . Show that the posterior distribution for μ is normally distributed with mean μ_* and variance δ_*^2 where;

$$\mu_* = \delta_*^2 \left(\frac{\mu_0}{\delta_0^2} + \frac{n\overline{x}}{\delta^2} \right) \text{ and } \delta_*^2 = \left(\frac{1}{\delta_0^2} + \frac{n}{\delta^2} \right)^{-1}$$
 (10 marks)

b) Let $X_1, X_2, ..., X_{10}$ be i.i.d random variables having a normal distribution with unknown mean θ and known variance 1.Assuming a prior normal distribution for θ with mean zero and variance 5. Let the sample mean be $\bar{x} = 1.873$

i. Compute the posterior distribution of
$$\theta$$
 (6 marks)

ii. Compute the 95% credible intervals for θ . (4 marks)

QUESTION THREE

a) Define the following terms:

b) Let $X_1, X_2,, X_n$ be n independent observations from a population with density function $f(x/\theta)$ where θ is unknown parameter. Let $\delta(x)$ and $\lambda(\theta)$ denote the Bayes estimator of $g(\theta)$ and prior distribution of θ respectively. By considering a quadratic loss function of the form $L(\delta(x), \theta) = C(\theta) [\delta(x) - g(\theta)]^2$ where $C(\theta) \ge 0$, show that $\delta(\underline{x}) = E[g(\theta)/\underline{x}]$ (7 marks)

c) Given
$$f(x/p) = \begin{cases} p(1-p)^{x-1}, & 0 \le p \le 1\\ 0, & otherwise \end{cases}$$

Suppose that the prior distribution of p is;

$$h(p) = \begin{cases} 1 & , & 0 \le p \le 1 \\ 0 & , & otherwise \end{cases}$$

Find the Bayes estimator of p with respect to the loss function defined as;

$$L(\delta(x), p) = C(p) [\delta(x) - p]^2 \text{ where } C(p) \ge 0.$$
 (9 marks)

QUESTION FOUR

a) Let $X_1, X_2, ..., X_n$ be *n* independent observations from

$$f(x/\theta) = \begin{cases} \theta^x (1-\theta)^{1-x}, & x = 0,1\\ 0, & otherwise \end{cases}$$

Let $L(\delta(x), \theta) = [\delta(x) - \theta]^2$. Show that the minimax estimator of θ for the squared error loss function is;

$$\delta(\underline{x}) = \frac{\overline{x}\sqrt{n}}{1+\sqrt{n}} + \frac{1}{2(1+\sqrt{n})} \quad \text{where } \quad \overline{x} = \frac{\sum x_i}{n}$$
 (15 marks)

b) Define conjugacy and explain why or why not, the beta prior is conjugate with respect to the negative Binomial likelihood. (5 marks)

QUESTION FIVE

- a) Suppose that $X_1, X_2, ..., X_n / \theta \approx i.i.d$ Poisson (λ).
 - i. What prior is conjugate for the Poisson likelihood? Give the distribution for λ along with any associated parameters. (2 marks)
 - ii. Calculate the posterior distribution of λ/\underline{x} using your prior in (i). (4 marks)
- b) The numbers of sales of a particular item from an internet retail site in each of 18 weeks are recorded. Assume that, given the value of a parameter λ , these numbers are independent observations from the Poisson (λ) distribution.

Our prior distribution for λ is a gamma (α , β) distribution.

- i. Our prior mean and standard deviation for λ are 16 and 8 respectively. Find the values of α and β . (4 marks)
- ii. The observed numbers of sales are as follows.

$$14$$
, 19 , 14 , 21 , 22 , 33 , 15 , 13 , 16 , 19 , 27 , 21 , 16 , 25 , 14 , 23 , 22 , 17 .
Find the posterior distribution of λ . (4 marks)

iii. Find a 95% posterior hpd interval for λ . (2 marks) (Note: If $X \sim gamma(\alpha, \beta)$, i.e. $f(x) = k x^{\alpha-1} e^{(-\beta x)}$, then the mean of X is

$$E(X) = \frac{\alpha}{\beta}$$
 and the variance of X is $var(X) = \frac{\alpha}{\beta^2}$

c) Discuss briefly the following Makov Chains Monte Carlo methods (MCMC) methods.

i. Gibbs sampling. (2 marks)

ii. Metropolis Hastings (2 marks)