

MACHAKOS UNIVERSITY

University Examinations 2017/2018

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

FOURTH YEAR SECOND SEMESTER EXAMINATION FOR

BACHELOR OF EDUCATION (SCIENCE) BACHELOR OF ARTS

SMA 407: MEASURE THEORY

DATE: 14/12/2017

TIME: 2:00 – 4:00 PM

INSTRUCTIONS

Answer <u>ALL</u> the questions in Section A and <u>ANY TWO</u> Questions in Section B

SECTION A: (COMPULSORY)

QUESTION ONE (30 MARKS)

a)	Define a measure?	(3 marks)
b)	Prove that if μ is a measure defined on a σ –algebra \mathfrak{X} . Then μ is monotonic, that is if	
	ECF , then $\mu(E) \le \mu(F)$. Furthermore if $\mu(E) \le \infty$, then $\mu(F - E) = \mu(F) - \mu(E)$.	
		(5 marks)
c)	Prove that $\mu^*({x}) = 0$ for all $x \in \mathbb{R}$	(4 marks)
d)	Show that if $\mu^*(E) = 0$, then E is L-measurable.	(5 marks)
e)	Prove that the space $(\mathbb{R}, \mathcal{M}, \mu)$, where μ is the lebesque measure is complete.	(5 marks)
f)	Prove that if $f, g: \rightarrow \mathbb{R}$ are two \mathfrak{X} –measurable functions and <i>c</i> be a real number then the	
	function cf is \mathfrak{X} –measurable	(5 marks)
g)	Prove that if φ and ρ are simple functions in $M^+(X, \mathfrak{X})$ and $c \ge 0$, then	
	$\int c\varphi du = c \int \varphi du$	(3 marks)

SECTION B: ANSWER ANY OTHER TWO QUESTIONS

QUESTION TWO (20 MARKS)

- a) Prove that if $f, g: \to \mathbb{R}$ are two \mathfrak{X} -measurable functions and *c* be a real number then the function
 - i) f^2
 - ii) |f| are \mathfrak{X} -measurable.
- b) Let (f_n) be a sequence of \mathfrak{X} -measurable functions $f_n: X \to \mathbb{R}$, then the functions $f_1 \cup f_2 \cup f_{3\cup} \dots \dots \cup f_n$ and $f_1 \cap f_2 \cap f_3 \cap \dots \dots \cap f_n$ is \mathfrak{X} -measurable. (5 marks)

(5 marks)

QUESTION THREE 20 MARKS

- a) State and prove monotone convergence theorem. (10 marks)
- b) Let (X, \mathfrak{X}) be a measurable space. Then if $f, g \in M^+(X, \mathfrak{X})$, then
 - i) $f + g \in M^+(X, \mathfrak{X})$ (6 marks)
 - ii) $\int cfdu = c \int fdu$ (4 marks)

QUESTION FOUR 20 MARKS

a)	Prove that if f and g both belong to M^+ and $f \le g$, then $\int f du \le \int g du$	(6 marks)
b)	Prove that if $f \in M^+$ and if $E, F \in \mathfrak{X}$, with $E \subseteq F$ then $\int_E f du \leq \int_F f du$	(7 marks)

c) State and prove Fatous lemma. (7 marks)

QUESTION FIVE 20 MARKS

a)	Define σ –algebra	(5 marks)
b)	Prove that if $A \subseteq B$ then $\mu^*(A) \leq \mu^*(B)$, $A, B \in \mathbb{R}$	(5 marks)
c)	Prove that $\mu^*(\emptyset) = 0$	(3 marks)
d)	Prove that lebesque outer measure μ^* is countably sub additive.	(7 marks)