

MACHAKOS UNIVERSITY

University Examinations 2017/2018

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

FOURTH YEAR FIRST SEMESTER EXAMINATION FOR BACHELOR OF EDUCATION (SCIENCE) BACHELOR OF EDUCATION (ARTS)

SMA 401: TOPOLOGY II

DATE: 5/12/2017 TIME: 2:00 - 4:00 PM

INSTRUCTIONS

Answer <u>ALL</u> the questions in Section A and <u>ANY TWO</u> Questions in Section B

SECTION A

QUESTION ONE (30 MARKS) COMPULSORY

- a) Define the following terms
 - i) Open cover
 - ii) Hausdorff spaces
 - iii) Compact spaces
 - iv) Separated sets
 - v) Locally compact sets (5 marks)
- b) Prove that the open interval A = (0,1) on the real line \mathbb{R} with the usual topology is not compact. (5 marks)
- c) Prove that every compact subset of a Housdorff space is closed. (5 marks)
- d) Show that if A and B are non-empty separated sets. Then, $A \cup B$ is disconnected

(5 marks)

- e) Show that every metric space is hausdorff space (5 marks)
- f) Prove that if F is closed subset of a compact space X, then F is also compact. (5 marks)

SECTION B: ANSWER ANY OTHER TWO QUESTIONS

QUESTION TWO (20 MARKS)

- a) Define hereditary as used in topological spaces (2 marks)
- b) $T_{0 \text{ and }} T_{1}$ spaces are hereditary prove (6 marks)
- c) Let (X, ρ) be a topological space (X, ρ) is a T_1 space iff each singleton subset $\{x\}$ is closed in (X, ρ) (6 marks)
- d) Prove that if X, ρ is a topological space which is a T_2 . Then every convergent sequence of points of X has a unique limit. (6 marks)

QUESTION THREE 20 MARKS

- a) Show that an infinite subset A of a discrete space X is not compact (7 marks)
- b) Prove that a closed subset F of a compact set X is also compact. (7 marks)
- Prove that a topological space X is compact if and only if $\{F_i\}$ of closed subsets of X satisfies the finite intersection property. (6 marks)

QUESTION FOUR 20 MARKS

- a) Prove that if A and B are disjoint compact subsets of Hausdorff spaces X. Then \exists open set G and H such that $A \subseteq G$ and $B \subseteq H$ and $G \cap H = \emptyset$ (6 marks)
- b) Prove that if X is compact then it is countably compact. (6 marks)
- c) Prove that if X is sequentially compact then it is countably compact. (6 marks)
- d) Let \mathbb{Z} be the set of integers. Is it sequentially compact. (2 marks)

QUESTION FIVE 20 MARKS

- a) Consider the following topology on $X = \{a, b, c, d, e\}$ $\rho = \{X, \emptyset, \{a, b, c\}, \{c, d, e\}, \{c\}\}$. Now $A = \{a, d, e\}$. Show that A is disconnected. (5 marks)
- b) Let $G \cap H$ be a disconnection of A. show that $G \cap A$ and $H \cap A$ are separated. (5 marks)
 - c) Prove that a set is disconnected if and only if it is not a union of two non-empty separated sets.

(5 marks)

d) Let $G \cup H$ be a disconnection of A and B be a connected subset of A. Show that $B \cap G = \emptyset$ or $B \cap H = \emptyset$. (5 marks)