MACHAKOS UNIVERSITY

University Examinations 2017/2018
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
SECOND YEAR SECOND SEMESTER EXAMINATIONS FOR
DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING
DIPLOMA IN BUILDING AND CIVIL ENGINEERING
DIPLOMA IN MECHANICAL ENGINEERING
MATHEMATICS VI
DATE: 18/12/2017
TIME: 2.00-4.00 PM
INSTRUCTIONS
Answer Question One and Any Other Two Questions

QUESTION ONE

a) Find the maclaurin's series for the functions
i. $\sin ^{2} x$
ii. $\operatorname{in}(1+3 x)$
b) Obtain he taylors series for the functions
i. $f(x)=\cos 2 x$
ii. $f(x)=\sin x$
c) Define interpolation and extrapolation
d) Derive the Newton Raphsons interpolation formula
e) Given $x_{1}=3$ is an approximation to the $\sqrt{10}$ use iteration to find a better approximation to the root
f) Determine the taylor's series of the function
$\mathrm{f}(\mathrm{x})=e^{\sin x}$

Hence evaluate the value of $\int_{0.1}^{0.5} e^{\sin x} d x$

QUESTION TWO

a) Given that x_{n} is an approximation to the root of the equation $4 x^{3}-6 x^{2}+15 x+4=0$ show that using Newton Raphsons method a better approximation x_{n+1} is given by $x_{n+1}=\frac{8 x^{3}-6 x_{n}^{2}+4}{12 x_{n}^{2}-12 x_{n}+15}$ hence taking the first approximation $x_{0}=0.7$
find to 6 decimal places the root of the equation
(10 marks)
Table 1 satisfies a function $f(x)$

X	-4	-2	0	2	4	6	8
$\mathrm{f}(\mathrm{x})$	-44	6	8	10	60	206	496

Using Gregory - Newton interpolation formulae determine the values of
i. $\quad f(-3.7)$
ii. $\quad f(6.5)$

QUESTION THREE

a) Given the function $x^{3}+2 x^{2}-5 x-1$ show that a better approximation to the root is given by $x_{n=1}=\frac{2 x^{3}+2 x^{2}+1}{3 x^{2}+4 x-5}$ hence using $x_{0}=1.4$ find a better approximation to the root of the equation
b) Using the table below

x	1	2	3	4	5	6	7
$\mathrm{~F}(\mathrm{x})$	-3	1	11	33	73	137	231

i. Construct a table of differences
ii. Use the table to obtain $f(2.8)$ and $\quad f(6.7)$

QUESTION FOUR

a) Given that $\operatorname{cod} 60^{\circ}=0.5$ determine the value of $\cos 70^{\circ}$ by taylors series
b) Determine the value of $\int_{0}^{1} \frac{\cos 2 x}{x^{\frac{1}{3}}} \mathrm{dx}$
c) Determine the value of $f(x)$ at $x=5.5$ given the table below

x	2	4	6	8	10
$\mathrm{~F}(\mathrm{x})$	14	88	274	620	1174

(10 marks)

