MACHAKOS UNIVERSITY

University Examinations 2017/2018
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
SECOND YEAR, FIRST SEMESTER EXAMINATIONS FOR

DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING
 DIPLOMA IN BUILDING AND CIVIL ENGINEERING
 DIPLOMA IN MECHANICAL ENGINEERING
 MATHEMATICS VIII

INSTRUCTIONS

Answer Question One and Any Other Two Questions

QUESTION ONE

a) Evaluate the Reinman sums
I. $\quad \int_{D} \int(3 x+4 y) \Delta x \Delta y \quad \Delta x=\frac{1}{4} \quad \Delta y=\frac{1}{4} \quad D: 0 \leq x \leq 1 ; 0 \leq y \leq 1$
(6 marks)
II. $\int_{D} \int \frac{x}{y}$
$\Delta x=\frac{1}{4} \quad \Delta y=\frac{1}{4} \quad D: 0 \leq x \leq 1 \quad ; 0 \leq y \leq 1$
(6 marks)
b) Evaluate
I. $\quad \int_{D_{1}} \int x^{2} y d A$
$D_{1} 0 \leq x \leq 1 \quad 0 \leq y \leq 1$
(5 marks)
II. $\quad \int_{D} \int\left(x^{2}+y^{2}\right) d A$

$$
\begin{equation*}
D-2 \leq x \leq 2 \quad-2 \leq y \leq 2 \tag{5marks}
\end{equation*}
$$

c) Show that
I. $\int_{a_{1}}^{a_{2}} \int_{b_{1}}^{b_{2}} f(x) d y d x=\left(b_{2}-b_{1}\right) \int_{a_{1}}^{a_{2}} f(x) d x$
(4 marks)
II. Evaluate

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1}(4 x+2 y) d y d x \tag{4marks}
\end{equation*}
$$

QUESTION TWO

a) Find the volume of the solid bounded by the surface $t=0 t=y-x^{2} \quad y=1$ (8 marks)
b) Evaluate the iterated integrals
I. $\int_{0}^{3} \int_{y^{2}}^{3 y} x^{2} y d x d y$
II. $\int_{0}^{1} \int_{0}^{1} x y(2 y+1) d y d x$
III. $\int_{-1}^{1} \int_{0}^{2} \frac{y}{1+x^{2}} d y d x$
IV. $\int_{0}^{1} \int_{0}^{1}\left(x^{2} y-3 x y^{2}+5\right) d y d x$ (3 marks)

QUESTION THREE

a) Evaluate

$$
\iint_{E} \int x y^{2} z^{3} d v \quad E: 0 \leq x \leq 2 \quad 0 \leq y \leq 1 \quad 0 \leq z \leq 4 \quad \text { (10 marks) }
$$

b) Find the mass and the center of the circle of a flat plate in the shape of a semi-circle of the radius one whose density is equal to the distance from the centre of the circle

QUESTION FOUR

Given the plane object $0 \leq x \leq 2 \quad 0 \leq y \leq 2 x \quad \rho(x, y)=x+y+1$
Find
a) The mass
b) The center of mass
c) The moment of inertia about the origin

